155 research outputs found

    Structural Insights into Interaction between Mammalian Methionine Sulfoxide Reductase B1 and Thioredoxin

    Get PDF
    Maintenance of the cellular redox balance has vital importance for correcting organism functioning. Methionine sulfoxide reductases (Msrs) are among the key members of the cellular antioxidant defence system. To work properly, methionine sulfoxide reductases need to be reduced by their biological partner, thioredoxin (Trx). This process, according to the available kinetic data, represents the slowest step in the Msrs catalytic cycle. In the present paper, we investigated structural aspects of the intermolecular complex formation between mammalian MsrB1 and Trx. NMR spectroscopy and biocomputing were the two mostly used through the research approaches. The formation of NMR detectable MsrB1/Trx complex was monitored and studied in attempt to understand MsrB1 reduction mechanism. Using NMR data, molecular mechanics, protein docking, and molecular dynamics simulations, it was found that intermediate MsrB1/Trx complex is stabilized by interprotein β-layer. The complex formation accompanied by distortion of disulfide bond within MsrB1 facilitates the reduction of oxidized MsrB1 as it is evidenced by the obtained data

    Accelerated synthesis of Sn-BEA in fluoride media:effect of H<sub>2</sub>O content in the gel

    Get PDF
    Sn-BEA synthesis in concentrated gels results in 2.5–4 fold reduction of crystallization time and formation of smaller zeolite crystals.</p

    Physicochemical aspects of recycling tree leaf litter in the south of Western Siberia by the Eisenia fetida (Savigny) vermiculture

    Get PDF
    The utility of the compost worm Eisenia fetida (Savigny) for recycling mixed leaf litter of the tree species characteristic of the forests in the south of Western Siberia and used in the landscaping in the city of Tomsk has been demonstrated. The tree species that are the major contributors to the leaf litter in the examined area include the genera Populus, Salix, and Betula. Two-fraction substrates for leaf litter vermicomposting and conventional composting (decomposition with and without earthworms) were prepared of the harvested and dried leaf litter. The feeding fraction consisted of leaf litter moistened with distilled water and the absorbing fraction, of alluvial river sand. The physicochemical properties of the studied leaf litter were weakly acidic pH of aqueous extracts, a very low content of nitrate nitrogen, and a relatively low K + concentration. The prevalent cation in the assayed leaf litter was Ca 2+ . The leaf litter was partially decomposed on the surface of sand substrates during 35-day incubation under humid conditions; accumulation of inorganic ions in the sand was one of the signs indicating this decomposition. Ca 2+ was also prevalent among these ions

    Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes

    Get PDF
    Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.Accepted Author ManuscriptBT/Environmental Biotechnolog

    Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells

    Get PDF
    Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.publishedVersio

    Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT

    Get PDF
    Ferroplasmaceae represent ubiquitous iron-oxidising extreme acidophiles with a number of unique physiological traits. In a genome-based study of Ferroplasma acidiphilum YT, the only species of the genus Ferroplasma with a validly published name, we assessed its central metabolism and genome stability during a long-term cultivation experiment. Consistently with physiology, the genome analysis points to F. acidiphilum YT having an obligate peptidolytic oligotrophic lifestyle alongside with anaplerotic carbon assimilation. This narrow trophic specialisation abridges the sugar uptake, although all genes for glycolysis and gluconeogenesis, including bifunctional unidirectional fructose 1,6-bisphosphate aldolase/phosphatase, have been identified. Pyruvate and 2-oxoglutarate dehydrogenases are substituted by ‘ancient’ CoA-dependent pyruvate and alpha-ketoglutarate ferredoxin oxidoreductases. In the lab culture, after ~550 generations, the strain exhibited the mutation rate of ≥1.3 × 10−8 single nucleotide substitutions per site per generation, which is among the highest values recorded for unicellular organisms. All but one base substitutions were G:C to A:T, their distribution between coding and non-coding regions and synonymous-to-non-synonymous mutation ratios suggest the neutral drift being a prevalent mode in genome evolution in the lab culture. Mutations in nature seem to occur with lower frequencies, as suggested by a remarkable genomic conservation in F. acidiphilum YT variants from geographically distant populations

    Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells

    Get PDF
    Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.publishedVersio

    Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms

    Get PDF
    Substrate specificity and selectivity of a biocatalyst are determined by the protein sequence and structure of its active site. Finding versatile biocatalysts acting against multiple substrates while at the same time being chiral selective is of interest for the pharmaceutical and chemical industry. However, the relationships between these two properties in natural microbial enzymes remain underexplored. Here, we performed an experimental analysis of substrate promiscuity and chiral selectivity in a set of 145 purified esterases from phylogenetically and environmentally diverse microorganisms, which were assayed against 96 diverse esters, 20 of which were enantiomers. Our results revealed a negative correlation between substrate promiscuity and chiral selectivity in the evaluated enzymes. Esterases displaying prominent substrate promiscuity and large catalytic environments are characterized by low chiral selectivity, a feature that has limited commercial value. Although a low level of substrate promiscuity does not guarantee high chiral selectivity, the probability that esterases with smaller active sites possess chiral selectivity factors of interest for industry (&gt;25) is significantly higher than for promiscuous enzymes. Together, the present study unambiguously demonstrates that promiscuous and selective esterases appear to be rare in nature and that substrate promiscuity can be used as an indicator of the chiral selectivity level of esterases, and vice versa
    corecore