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Abstract 33 

Ferroplasmaceae represent ubiquitous iron-oxidising extreme acidophiles with a number of unique 34 

physiological traits. In a genome-based study of Ferroplasma acidiphilum YT, the only species of the 35 

genus Ferroplasma with a validly published name, we assessed its central metabolism and genome 36 

stability during a long-term cultivation experiment. Consistently with physiology, the genome analysis 37 

points to F. acidiphilum YT having an obligate peptidolytic oligotrophic lifestyle alongside with 38 

anaplerotic carbon assimilation. This narrow trophic specialisation abridges the sugar uptake, although 39 

all genes for glycolysis and gluconeogenesis, including bifunctional unidirectional fructose 1,6-40 

bisphosphate aldolase/phosphatase, have been identified. Pyruvate and 2-oxoglutarate dehydrogenases 41 

are substituted by ‘ancient’ CoA-dependent pyruvate and alpha-ketoglutarate ferredoxin 42 

oxidoreductases. In the lab culture, after ~550 generations, the strain exhibited the mutation rate of ≥1.3 43 

x 10-8 single nucleotide substitutions per site per generation, which is among the highest values recorded 44 

for unicellular organisms. All but one base substitutions were G:C to A:T, their distribution between 45 

coding and non-coding regions and synonymous-to-non-synonymous mutation ratios suggest the neutral 46 

drift being a prevalent mode in genome evolution in the lab culture. Mutations in nature seem to occur 47 

with lower frequencies, as suggested by a remarkable genomic conservation in F. acidiphilum YT 48 

variants from geographically distant populations. 49 

50 
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Introduction 51 

Ferroplasma acidiphilum YT (DSM 12658T) from the family Ferroplasmaceae, order 52 

Thermoplasmatales, phylum Euryarchaeota are iron-oxidising extreme acidophiles that require small 53 

amounts (0.02 % w/vol) of yeast extract for growth and populate environments with low pH values and 54 

rich in sulfur compounds and metals in the form of sulfides1,2. Various ecological aspects related to this 55 

widely distributed archaeal group were reviewed earlier3. Deep metagenomic and metaproteomic 56 

investigations of microbial communities of acid mine drainage (AMD) biofilms in Iron Mountain (CA, 57 

USA) inhabited inter alia by the members of the family Ferroplasmaceae, have been conducted to 58 

provide some insights into, and hypotheses on, their metabolism and physiology4,5,6. A number of 59 

uncommon biochemical features have also earlier been revealed for F. acidiphilum YT, such as an 60 

unusually high proportion of iron-containing proteins in the proteome and low pH optima for the 61 

enzyme activities in vitro7,8,9. Despite aforementioned research milestones on Ferroplasmaceae, there is 62 

a further need in investigation of metabolism of F. acidiphilum YT, important in the relation to the 63 

practical applications and for filling the void in our understanding of fundamental mechanisms of its 64 

lifestyle. In particular, there is still no consensus on the major mechanisms of carbon assimilation and 65 

hence on the major role of Ferroplasma spp. play in the environment (apart from the ferrous oxidation, 66 

which is well established and characterised in detail). Suggested patchiness of the genomic pools of, and 67 

frequent recombinations in genomic variants in Ferroplasma spp. and “Ferroplasma acidarmanus” fer1 68 

in their natural environment10 that could also be linked with a certain mosaicness of assemblies resulting 69 

from metagenomic data from a multitude of clonal variants, could also be verified by the analysis of a 70 

genome from geographically distant, yet closely related sibling with 100% SSU rRNA gene sequence 71 

identity. For this, the high-quality, ungapped genome from a characterised reference isolate from a 72 

similar environment represents a good opportunity.  73 

Here, we present the genome-based and wet-lab analysis of F. acidiphilum YT in the context of its niche 74 

adaptation, nutrients acquisition, energy and carbon metabolic pathways and its relatedness with 75 
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phylogenetic neighbours. Furthermore, we provide an overview of the in vitro genome evolution 76 

patterns during the long-term maintenance of the strain in the laboratory culture.  77 

 78 

RESULTS AND DISCUSSION 79 

Genome stability and evolution 80 

General genome features.  81 

The size of the genome of F. acidiphilum YT is 1.826.943 bp, G+C content 36.49 %, the total gene 82 

number was predicted to be 1773 (excluding 19 CDS with pseudogene qualifiers) with a coding density 83 

of 86.4 %; 508 genes were revealed to code for hypothetical proteins. Loci for 5S, 16S and 23S rRNA 84 

are not arranged in a single operon, but scattered in the chromosome; 46 tRNAs were predicted.    85 

Genome sequence comparison of F. acidiphilum YT with “F. acidarmanus” strain fer1.  86 

Strains F. acidiphilum YT and “F. acidarmanus” fer1 have zero mismatches in their 16S rRNA gene 87 

sequences, which, nevertheless, does not prove by itself that both belong to the same species. It was 88 

therefore worth to assess their relatedness by using the Average Nucleotide Identity (ANI) analysis 89 

(http://enve-omics.ce.gatech.edu/ani/11). The analysis suggested the median ANI value of 98.7 % (Fig. 90 

S1), which is well above the commonly accepted cut-off (95 %) for separation of two species based on 91 

the whole-genome comparisons. In addition to that, the application of the online Genome-to-Genome 92 

Distance Calculator (GGDC 2.0 tool, http://ggdc.dsmz.de/distcalc2.php12) using all three default 93 

calculation formulae suggested DNA-DNA hybridization (DDH) values 73.1, 85.5 and 85.80% and 94 

DDH values >= 70% with the probabilities 83.97, 97.3 and 98.38, correspondingly. To sum up, both 95 

analyses suggested that based on their genomic sequences, F. acidiphilum YT and “F. acidarmanus” 96 

belong to the same species, despite showing some physiological differences reported earlier5. 97 

Interestingly, the geographical separation of these two organisms (and many others, as one can judge 98 

from metagenomic assemblies in public sequence databases) has not lead to a great deal of speciation. 99 

This may also suggest that their geographical separation occurred relatively recently and that despite the 100 
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affiliation of these archaea to a very special niche, they must be rather robust to, and persistent in the, 101 

non-acidic environments, which allows them to disseminate and colonise the sulfidic, low-pH niches 102 

across the planet. Seemingly under natural conditions the evolution of such small genome-sized (and 103 

hence having a narrow metabolic repertoire), slowly metabolising organisms is on-going at lower rates, 104 

which restricts the genome evolution and therefore prevents the divergence and speciation. This is also 105 

in line with the suggestion that small and compact genomes, as well as single-copy rRNA genes are the 106 

signs for minimising metabolic costs in habitats where neither a broad metabolic repertoire, nor high 107 

numbers of paralogous proteins are needed to accommodate growth under very constant and stagnant 108 

environmental conditions. 109 

Horizontally transferred genomic islands in F. acidiphilum YT.  110 

Horizontally transferred genomic islands (GIs) were identified in the complete genome sequence of F. 111 

acidiphilum YT by the Seqword Gene Island Sniffer (SWGIS) program13, IslandViewer program 112 

package comprising three different GI prediction algorithms14 and by GOHTAM15. Joint results of GI 113 

identification by different methods are shown in Fig. 1. Nine putative GIs characterized by alternative 114 

oligonucleotide usage (OU) patterns were detected by SWGIS and IslandViewer programs predicted 115 

three shorter GIs. GOHTAM returned many short regions with atypical tetranucleotide and/or codon 116 

usage; however, not all of them necessarily were of a lateral origin. Predicted GIs mostly harboured 117 

genes with unknown functions, a few transposases and several enzyme-coding genes including a gene 118 

cluster of archaeal sulfocyanin-containing respiratory system and a beta-lactamase in GI [126,000-119 

156,681] and a cluster of genes encoding CRISPR-associated proteins in seventh GI [905,732- 938,099] 120 

(see below for more details). Our findings indicate that the horizontal gene transfer might play an 121 

important role in the evolution of metabolic pathways of F. acidiphilum YT and in the acquisition of a 122 

resistance against viruses.  123 

GIs identified were searched for tetranucleotide pattern similarity through the database of 17,984 GIs 124 

detected in 1,639 bacterial and chromosomal sequences (see the database at 125 



6 
 

www.bi.up.ac.za/SeqWord/sniffer/gidb/index.php)16.  Significant compositional similarity of GIs from 126 

F. acidiphilum YT was found with GIs of many other archaea and bacteria belonging to distant 127 

taxonomic units. However, the highest similarity was observed between GIs of F. acidiphilum and 128 

another acidophilic archaeon Thermoplasma volcanium GSS1. Remarkably, among recipients of GIs 129 

from other extremophiles, there were several Bacteroides species.  130 

The factor playing an important role in the genome evolution and lateral gene transfer are transposases. 131 

In total, 80 transposases have been predicted, among them 28 belonged to IS4 family proteins and 10 132 

were affiliated with MutS transposase mutator family proteins (COG3328). As it was suggested earlier17 133 

the MutS homologs are abundant in Euryarchaeota and could be indicative to the gene transfer from 134 

bacteria to archaea. Other genes encode IS605 OrfB family transposases and ISA0963 transposases, 135 

IS2000 family protein, MULE, OrfA of protein families, consistently with the previous reports of 136 

Thermoplasmatales to commonly carry numerous ISs of the families IS4 IS5, IS256, IS481, ISA1214 137 

and IS2000/605/60718.  138 

Mismatch repair and recombination.  139 

Recombination and mismatch repair proteins were represented by the DNA resolvase (FAD_0665) 140 

exhibiting a relatively low similarity to its counterparts from methanogens and bacteria. DNA-repair 141 

helicase FAD_1466 was similar to archaeal Rad25 proteins, FAD_1503 exhibited 30% identity with 142 

Sulfolobales XPD/Rad3-related DNA helicases and with another DNA repair protein FAD_1564. Genes 143 

FAD_0550 and FAD_0559 encode DNA repair and recombination proteins RadA and RadB, archaeal 144 

homologs of RecA and Rad51, respectively; the latter is considered of being Euryarchaeota-specific19. 145 

Mismatch repair proteins, MutS-like ATPases (FAD_0765-0766), were most similar to MutS proteins 146 

from bacteria and Thermoplasmatales. The genome encodes a number of endonucleases, namely of the 147 

type II restriction endonuclease FAD_0313 exhibiting a high similarity only with bacterial proteins, two 148 

gene copies for endonucleases of types III (FAD_1157, 1370), IV (FAD_0129, 1301) and of type V 149 

(FAD_0403) as well as Fen1 (FAD_0558) and PolX (FAD_1333) endonucleases. 150 
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Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). The F. acidiphilum YT 151 

genome revealed the presence of two clusters of Clustered Regularly Interspaced Short Palindromic 152 

Repeats (CRISPR) separated by one operon encoding the CRISPR-associated (Cas) proteins and ten 153 

genes, which are not related to CRISPR (Fig. 2). CRISPRs and Cas proteins represent a microbial small 154 

RNA-based interference system found in most archaea and many bacteria; the CRISPR-Cas system 155 

functions as the adaptive microbial immune system against invading viruses and plasmids, and it also 156 

has a role in microbial pathogenesis, DNA repair, and biofilms20. The cluster CRISPR1 of F. 157 

acidiphilum YT is quite large and contains 133 identical and 3 degenerated direct repeats (30 bp long) 158 

separated by 135 different spacers of similar size (34-39 bp) (Fig. 2). The cluster CRISPR2 is smaller 159 

with 31 direct repeats (31 bp each) separated by 30 different spacers (35-38 bp, with spacer 5 being 62 160 

bp). Neither spacers, nor repeats from these clusters share any sequence similarity to each other. The 161 

rather large size of both CRISPR1 and CRISPR2 arrays might be indicative of high activity of the F. 162 

acidiphilum YT CRISPR system21,22. The NCBI Blast analysis of the F. acidiphilum YT CRISPR spacers 163 

revealed no homologous sequences present in the available viral genomes or plasmids suggesting that its 164 

CRISPR targets have yet to be discovered. Only the spacer 2 from cluster CRISPR2 was found to be 165 

identical to a region in a gene encoding the hypothetical protein FACI_IFERC00001G0010 in the “F. 166 

acidarmanus” genome, a large uncharacterized protein with the predicted UvrD-like helicase and 167 

restriction endonuclease type II-like domains. Although the “F. acidarmanus” genome also encodes two 168 

CRISPR clusters and eight cas genes, their repeat sequences showed no similarity one to another 169 

suggesting that their CRISPR systems are not related. The eight cas genes of F. acidiphilum YT are 170 

associated with the cluster CRISPR1 and are expected to be co-transcribed (cas6, cas10, cas7, cas5, 171 

cas3, cas4, cas1, and cas2) (Fig. 2). Based on the cas gene arrangement and the presence of cas10, the 172 

F. acidiphilum YT CRISPR-Cas system can be classified as a CRISPR subtype I-D, which is similar to 173 

the type III system23. This is consistent with the fact that most archaea contain the CRISPR subtypes A, 174 

B, or D24. In most of the type I and III CRISPR systems, Cas6 proteins cleave long pre-CRISPR RNA 175 
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(crRNA) transcripts generating mature crRNAs containing a single spacer with flanking repeat 176 

fragments25. Based on sequence, the type I-D CRISPR repeats have been predicted to form hairpin 177 

structures, which are recognized by Cas6 proteins and cleaved at the 3'-base of the stem-loop. Analysis 178 

of the F. acidiphilum YT CRISPR1 and CRISPR2 repeats revealed that they can form similar hairpin 179 

structures suggesting that both CRISPR1 and CRISPR2 pre-crRNAs can be processed by the single F. 180 

acidiphilum YT Cas6 protein. Comparison of amino acid sequences of the F. acidiphilum YT Cas 181 

proteins with GenBank identified the Cas1 and Cas2 proteins from Picrophilus torridus (an acidophilic 182 

archaeon and the closest phylogenetic neighbour of Ferroplasmaceae) as the top BLAST hits (50% and 183 

46% sequence identity, respectively). However, other Cas proteins from F. acidiphilum YT were more 184 

similar to the corresponding Cas proteins from the metagenomic assembly dubbed “Ferroplasma sp. 185 

Type II” (58% to 75% sequence identity). 186 

Analysis of mutations over the long-term cultivation in vitro.  187 

Comparison of two variants of genomes of F. acidiphilum YT (i.e. the original culture deposited in the  188 

DSMZ in 1998 (DSM 12658T) and the culture continuously grown in laboratory with re-inoculation 189 

intervals of 24.5 days for 11 years) revealed 116 single-nucleotide substitutions (see Supplementary 190 

Table S2 for details on substitutions and single-nucleotide polymorphism) randomly scattered across the 191 

chromosome (Fig. 1), green arrowheads on the outer circle). 115 out of 116 were GC to AT 192 

substitutions; such nucleotide shift is a common tendency for spontaneous single-base substitutional 193 

mutations26 and indicates that F. acidiphilum YT genome with already low GC content is prone to 194 

further AT enrichment. Among substitutions, 12 (about 11 %) were detected in non-coding sequences 195 

that is consistent with the overall coding percentage (86.4 %) in the genome. From bases’ substitutions 196 

in coding sequences, 34 of 103 (i.e. 33%) were synonymous. Majority of 69 non-synonymous base 197 

substitutions resulted in non-conservative amino acid changes and only in 7 cases resulted in conserved 198 

ones. 11 genes had two substitution sites (Table S2). Substitutions in coding regions mostly occurred in 199 

genes with known functions but also in 17 genes encoding hypothetical proteins (almost all these 200 
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proteins contain one or more conserved domains). Some base substitutions occurred in genomic islands 201 

1, 2 and 4, specifically in the GI 1, which contains gene clusters coding for ribosomal proteins (Fig. 1) 202 

and Table S2). Distribution of substitutions in other GIs showed evidence of those in functional genes, 203 

only one mutation occurred in a hypothetical gene.  204 

Base-substitutional mutation rate per nucleotide position per generation calculated for F. acidiphilum YT 205 

was within the highest range of that in other unicellular organisms, i.e. was similar or higher than that in 206 

Mesoplasma florum27, which until now had the highest record of mutation rates per base per generation. 207 

According to the data27, in prokaryotic organisms, viruses and most (except four) unicellular eukaryotes 208 

base substitution rates per site per cell division fit the regression plot log10u=-8.663-1.096log10G (u and 209 

G are mutation numbers and genome sizes, respectively, and r2=0.872) (Fig. 3). F. acidiphilum YT, 210 

however, occupies an outstanding position in this respect with remarkable 0.02 (conservative estimates) 211 

mutations per generation per genome (as a comparison, this figure for Escherichia coli is of approx. 212 

0.001). We hypothesize that one of the possible reasons of these outstanding mutation rates may be the 213 

earlier observed abnormal abundance of intracellular iron in the cells of F. acidiphilum YT 8, which may 214 

under oxidative stress conditions be linked with excessive DNA damage by Fenton reaction. Another 215 

factor, which may contribute to the high mutation rates, is the error-prone DNA polymerase IV 216 

(FAD_1298), which is capable of inducing mutations at sevenfold higher rate than under its 217 

deficiency28. The experimental validation of above hypotheses though is yet to be conducted.  218 

 219 

Energy and carbon metabolism 220 

Oxygen respiration and iron oxidation 221 

The detailed biochemical study of the respiratory chain of F. acidiphilum strain YT has recently been 222 

reported29. Interestingly, the genes coding for electron flow chain involved in iron oxidation in F. 223 

acidiphilum YT were located in the identified Genomic Island/GI 1 (126,000-156,681), similarly to that 224 
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in P. torridus and Cuniculiplasma divulgatum, where the origin of the respiratory complexes has also 225 

been attributed to the lateral gene transfer30,31. 226 

Related to the synthesis of the Fe-S systems we have detected the cysteine desulfurase gene 227 

(FAD_0633), co-clustered genes sufC and sufB genes (probably related to the above) and the 228 

hypothetical protein with a low similarity level to bacterial SufD like protein (FAD_1089-1087). There 229 

were 6 ORFs in the genome related to ferredoxin synthesis (FAD_0146 [COG0348]; FAD_0257 230 

[COG1146]; FAD_1078 [COG1145]; FAD_1661 [COG2440]; FAD_1852 [COG1146] and FAD_1160 231 

[COG2440]). Most of them contain 4Fe-4S clusters, providing low potential electron donors for redox 232 

processes in F. acidiphilum YT.  233 

Amino acids metabolism. 234 

Genome inspection of F. acidiphilum YT revealed incomplete synthesis pathways for histidine, 235 

isoleucine, leucine and valine (Fig. S2) pointing at the dependence on external sources and hence 236 

supporting the role of Ferroplasma in the environment as iron-oxidising proteolytic ‘scavengers’. The 237 

well-developed capacity for degrading amino acids is encoded by the F. acidiphilum YT genome. For 238 

example, we found the genes for the degradation of histidine via urocanate (FAD_1379) and 239 

tryptophane via kynurenine to anthranilate (FAD_0101-0104) and 2-oxoacid dehydrogenase complex 240 

(FAD_1290-1291). Transamination of aspartate and glutamate via aspartate aminotransferases 241 

(FAD_0393, 0538 and 1098) and glutamate dehydrogenase (FAD_0434) generates corresponding 242 

branched-chain 2-oxoacids, oxaloacetate and 2-oxoglutarate, which are citric acid cycle intermediates. 243 

Bioleaching pilot plant, from where F. acidiphilum YT was isolated, contained ore particles of various 244 

sizes, where this archaeon may encounter anoxic microenvironments. Physiological studies performed 245 

on F. acidiphilum YT denoted this strain as a facultative anaerobe, coupling chemoorganotrophic growth 246 

on yeast extract to the reduction of ferric iron5. However, the detected reduction cannot be recognised as 247 

respiratory reactions since the obtained biomass was very low and close to no substrate-control. 248 

Nevertheless, we looked for corresponding genes relevant to a certain metabolic activity of F. 249 
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acidiphilum YT strain under anaerobic conditions. Pyruvate can be converted to acetyl-CoA by a 250 

ferredoxin-dependent pyruvate oxidoreductase (POR, FAD_0567-0568). Obtained product may be 251 

converted to acetate by an ADP-forming acetyl-CoA synthetase thus providing substrate level 252 

phosphorylation step of pyruvate fermentation. Additionally, the F. acidiphilum YT genome possesses 253 

all genes necessary for complete arginine fermentation, i.e. arginine deiminase pathway. This ‘ancient’ 254 

catabolic route, converting arginine to ornithine, carbon dioxide, ATP and ammonium constitutes a 255 

major source of energy for some obligate anaerobic bacteria and fermenting archaea32,33. Produced 256 

ammonium increases the intracellular pH and has been shown to be important for survival of various 257 

prokaryotes in acidic environment34. The arginine deiminase pathway was probably present in the last 258 

universal common ancestor (LUCA) to all the domains of life and its genes evolved independently, 259 

undergoing complex evolutionary changes leading to a later assemblage into a single cluster with 260 

functional interdependence33. It must be noted that all three genes of the arginine deiminase pathway, 261 

namely arginine deiminase (FAD_0428), ornithine transcarbamoylase (FAD_1523) and carbamate 262 

kinase (FAD_0067) are not in a single operon, but are located distantly one from another in the F. 263 

acidiphilum YT genome; the above has so far not been detected in any other but very closely related 264 

extremely acidophilic archaea.  265 

Arginine fermentation route is not the only signature of ancient anaerobic LUCA metabolism, which 266 

occurs in the F. acidiphilum YT genome. Following the method described elsewhere35,36, we identified 267 

several other genes of the ancient metabolic core including 6 methyltransferases (FAD_0113, 0367, 268 

1012, 1218, 1562 and 1651), 5 SAM-dependent methyltransferases (FAD_0758, 0931, 1052, 1315 and 269 

1729) and ferredoxin (FAD_0146) in addition to several subunits of the H+/Na+-antiporter 270 

Mrp/hydrogenases and related complexes (FAD_0579-0584). The acquisition of this antiporter 271 

comparable to [NiFe] hydrogenases was proposed as a crucial step at the early stages of bio-energetic 272 

evolution, which allowed conversion of geochemical pH gradient into the biologically more useful Na+ 273 

gradient37. Noteworthy, all these protein families are typical for strict anaerobes and rarely occur in 274 
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genomes of aerotolerant or facultatively anaerobic prokaryotes, harbouring heme-copper oxygen 275 

reductases36. F. acidiphilium YT can be an example of such rare organisms that possess both LUCA 276 

candidate gene protein families alongside the cytochrome oxidases. 277 

TCA cycle in F. acidiphilum YT 278 

As observed in a multitude of studies, for a successful isolation of many prokaryotes, and especially 279 

archaea, the yeast extract should be added into the cultivation media as an essential component and a 280 

source of numerous cofactors and nutrients but also oligopeptides and amino acids. These nutrients are 281 

fundamental substrates feeding many metabolic pathways, including tricarboxylic (citric) acid cycle 282 

(TCA). This cycle is likely the central metabolic hub of F. acidiphilium YT, while most proteins 283 

involved in the canonical TCA cycle were identified in genome, except for 2-oxoglutarate (OG) 284 

dehydrogenase complex (Fig. 4). In common with some other archaea38,39, the conversions of pyruvate 285 

to acetyl-CoA and of 2-OG to succinyl-CoA are catalysed by the respective pyruvate:ferredoxin 286 

oxidoreductase (POR, FAD_0567-0568) and alpha-ketoglutarate:ferredoxin oxidoreductase (KOR, 287 

FAD_0712-0713). Although both enzymes were initially characterised as extremely oxygen-sensitive, 288 

POR and KOR activities have been demonstrated also in a number of obligately aerobic organisms40,41. 289 

Compared to their anaerobic counterparts, these enzymes are oxygen-tolerant, exhibit lower rates and 290 

have an unusual subunit structure42,43. Noteworthy, it has been suggested44 that to support biosynthetic 291 

reactions some aerobic prokaryotes might utilise KOR for the reductive carboxylation of succinyl-CoA 292 

to 2-OG. Given that succinyl-CoA synthetase, succinate dehydrogenase, fumarate hydratase and malate 293 

dehydrogenase are the enzymes that catalyse reversible reactions, the formation of 2-OG from 294 

oxaloacetate via malate, fumarate, succinate and succinyl-CoA is apparently plausible for F. 295 

acidiphilum YT (Fig. 4). This finding suggests that, while relying primarily on amino acids catabolism 296 

for carbon, F. acidiphilium YT can recruit the partially reverse, or reductive, TCA cycle as the additional 297 

anabolic strategy to produce important precursors for biosynthesis. This strategy was demonstrated in a 298 

number of archaea and acidophilic bacteria45. 299 
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Although we did not quantify the expression of all genes involved in TCA cycle, the transcriptomic 300 

analysis of succinate dehydrogenase and malate dehydrogenase revealed that both enzymes were 301 

expressed to a similar extent (Fig. 4). Recently, these enzymes were identified in Ferroplasma proteome 302 

as proteins induced during anaerobic growth coupled with ferric iron reduction46,47. It is therefore most 303 

likely that under these conditions, in order to provide the terminal electron acceptor (Fe3+) with reducing 304 

power, the catabolic function of TCA cycle prevails over the anabolic.  305 

In connection with the inability to use acetate as the sole carbon source, the key enzymes of the 306 

glyoxylate cycle, isocitrate lyase, and malate synthase, could not be identified in the F. acidiphilum YT 307 

genome. Concluding the description for the oxidative, partially “anaerobic” TCA cycle, it becomes 308 

apparent that due to the capability of KOR for the reductive carboxylation, F. acidiphilum YT cells 309 

possess an enzymatic machinery permitting to convert succinyl-CoA into 2-OG while fixing inorganic 310 

carbon. 2-OG can be directly converted into amino acids by glutamate dehydrogenase (FAD_0434), 311 

which assimilates ammonium and besides biosynthetic function can be regarded as a part of nitrogen 312 

metabolism. Additionally, glutamate can be also formed from 2-OG by an aspartate aminotransferase 313 

(FAD_1098) yielding oxaloacetate (Fig. 4).  314 

Glycolysis/ Gluconeogenesis. 315 

Growth on amino acids requires a gluconeogenic pathway for carbohydrate synthesis48 and in line with 316 

that all genes for a reverse glycolytic pathway have been identified. Interestingly, Ferroplasma 317 

possesses a gene encoding a bifunctional gluconeogenetic fructose 1,6-bisphosphate 318 

aldolase/phosphatase, a strictly anabolic enzyme, which is discussed as being an ancestral enzyme 319 

type49. Consistently, homologues for classical (glycolytic) fructose 1,6-bisphosphate aldolases are 320 

missing. Although F. acidiphilum YT was reported to be unable to use sugars as the sole carbon source, 321 

genes coding for some essentially irreversible reactions of glycolysis, besides aldolase, appear to be 322 

present in the genome. These are glucokinase (FAD_0277), phosphofructokinase (FAD_0353). Thus, it 323 

is likely that the absence of corresponding transporters preclude the uptake of external glucose, which, 324 
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nevertheless, can be metabolised in phosphosugars and pentoses if synthesised de novo by F. 325 

acidiphilum YT cells. In consistency with findings in other archaea50, the oxidative pentose phosphate 326 

pathway is lacking in F. acidiphilum YT, but its reductive part is fully present and likely operative (Fig. 327 

4). 328 

Putative CO2 assimilation mechanisms through gene expression analysis.  329 

Earlier it was reported that F. acidiphilum YT was able to incorporate into its biomass the inorganic 330 

carbon in the form of 14CO2 
1,51. The genome analysis however did not suggest a clear assimilatory 331 

pathway whereas a number of carboxylation reactions may have led to the incorporation of CO2 into the 332 

biomass. Besides mentioned above reductive carboxylation of succinyl-CoA to 2-OG by KOR, it is 333 

possible that also POR enzyme is used in the reverse direction for anabolic purposes to support 334 

biosynthetic reactions. Additionally, the F. acidiphilum YT genome harbours two enzymes whose 335 

activity in the carboxylation direction might be involved in CO2 fixation: phosphoenol pyruvate 336 

carboxylase (PEPC) (FAD_1044) and NAD-binding malate oxidoreductase (malic enzyme FAD_0703) 337 

(Fig. 4).  338 

Expression of genes for these four enzymes along with succinate and malate dehydrogenases was 339 

detected and quantified by real-time PCR. Prior to perform the RT-PCR assays we estimated the nucleic 340 

acids ratio in F. acidiphilum YT culture harvested after 4 days, which corresponded to the late 341 

exponential/early stationary growth phase. This value provides an indication of cellular RNA levels, i.e. 342 

metabolic state, and is independent of the number of cells examined. The estimated RNA ⁄ DNA ratio of 343 

7.81 indicated that F. acidiphilum YT cells were actively metabolising at this state. Two housekeeping 344 

genes, gyrB and rpl2 exhibiting constitutive levels of expression, were selected as standards to quantify 345 

the relative abundance of F. acidiphilum YT gene transcripts involved in both, TCA cycle and in 346 

anaplerotic CO2 assimilation (Table S1). Compared to gyrB transcripts, we detected a slightly higher 347 

transcription level of rpl2 (the structural component of the large 50S ribosomal subunit), which reflected 348 

the active metabolic state of F. acidiphilum YT. Noteworthy, while comparable with expression levels of 349 
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the references, relative amounts of sdhA, sdhD and mdhI transcripts were significantly reduced (40-200-350 

fold) as compared to those of POR, KOR and malic enzyme. The PEPC transcripts were detected in 351 

quantities similar to those of gyrB (Fig. 4). As far as only PEPC catalyses irreversible carboxylation, the 352 

RT-PCR data confirm that direct carboxylation reactions do contribute to the inorganic carbon uptake by 353 

F. acidiphilum YT cells. We are aware that to confirm unambiguously the contribution of POR, KOR 354 

and malic enzyme to the total cellular carbon formation, more in-depth biochemical studies of 355 

anaplerosis are needed.  356 

Transport mechanisms of F. acidiphilum YT are habitat-specific  357 

To thrive in environmental settings with high concentrations of metals and metalloids (iron, copper, 358 

cadmium, zinc and arsenic) F. acidiphilum YT must possess the corresponding set of important transport 359 

mechanisms. Various genes coding for cation diffusion facilitator family, manganese/divalent cation and 360 

tellurium resistance ABC transporters were detected in the F. acidiphilum YT genome (Table S3). These 361 

transporters increase tolerance to divalent metal ions such as cadmium, cobalt, tellurium and zinc. 362 

Besides, they may provide essential cofactors like molybdate and tungsten for diverse enzymes.  363 

F. acidiphilum YT is native to arsenic-rich environments, and to withstand the arsenite stress the genome 364 

encodes the ATP-dependent arsenite efflux pump. Genes for homologues of arsenite-sensitive regulator 365 

(FAD_1795) and arsenite efflux pump permease (FAD_1796) were found located in a single operon. A 366 

gene encoding for an arsenite efflux pump ATPase located distantly from the ars operon on the 367 

chromosome was also identified (FAD_1514). With regard to the phosphorus, the F. acidiphilum YT 368 

genome possesses one sodium-dependent phosphate transporter FAD_1510 and three inorganic 369 

phosphate:H+ symporters (FAD_1260, 1738, 1753). Previously we described the narrow specialisation 370 

of F. acidiphilum YT in uptake of organic substrates, highlighting that this strain was not capable of 371 

growth on any of tested compounds, including organic acids, alcohols and single amino acids, common 372 

sugars and related compounds1. The addition of yeast extract was observed to be essential for growth 373 

with the optimum concentration at 200 mg l-1. In concordance with these observations, F. acidiphilum 374 
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YT genome is lacking genes for the transport and assimilation of common organic compounds other than 375 

amino acids, and has only one identifiable integral carbohydrate ABC transporter (FAD_1026-1028). 376 

Herewith, at least 7 oligopeptide/peptide ABC transporters and 17 transporters for amino acids were 377 

found. Additionally to this cluster of transporters, the F. acidiphilum YT genome harbours 48 genes for 378 

transporters belonging to the Major Facilitator Superfamily (MFS). Although poorly characterised, this 379 

large and diverse group of secondary transporters was found to participate in the export of structurally 380 

and functionally unrelated compounds and in the uptake of a variety of substrates including ions, amino 381 

acids and peptides52,53. These MFS-affiliated genes were found to be located nearby genes for 382 

membrane and transposase IS4 family proteins, amino acids transporters or vitamins biosynthesis. 383 

Certain speculation on various possible functionalities might be done in this relation. F. acidiphilum YT 384 

MFS-related proteins exhibited the most significant similarity mostly to the counterparts from 385 

Thermoplasmatales known to possess highest number of MFS proteins among other Euryarchaeota (13 386 

in average) according to http://supfam.org/SUPERFAMILY54. In this context, the number of MFS-387 

related genes found in F. acidiphilum YT genome (48) is within the range (in average, 40 per genome) 388 

for Thermoplasmatales that occupy the same or similar environments. 389 

Consistently with the abundance of oligopeptide/peptide transporters, the genome of F. acidiphilum YT 390 

encodes 16 cytoplasmic and membrane-associated proteases and aminopeptidases, including tricorn 391 

protease FAD_0691 and its integrating factors F2 (FAD_0645) and F3 (FAD_0317) both possessing the 392 

aminopeptidase activity. In conjunction with these factors, tricorn protease can degrade oligopeptides in 393 

a sequential manner, yielding free amino acids55. Besides this sophisticated cell-associated proteolytic 394 

machinery, the genome of F. acidiphilum YT encodes three secreted acid proteases thermopsins 395 

(FAD_0679, 0833 and 1292). Thus, in concordance with physiology, the genome analysis indicates that 396 

F. acidiphilum YT has a metabolism specialised in efficiently converting proteins and peptides into 397 

amino acids. Noteworthy, the growth of the strain F. acidiphilum YT is strongly affected by the presence 398 

of yeast extract in amounts greater than 200 mg l-1 and is completely inhibited at concentrations greater 399 
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than 2 g l-1. As we realised from the genome analysis, the membrane of F. acidiphilum YT is likely to be 400 

well supplied with numerous protein- and amino acid-transporting complexes determining exceptional 401 

nutrient-scavenging capabilities. If this is true, the sudden entry into the cytoplasm of an abundance of 402 

nutrients could overwhelm the respiratory metabolism with reducing power that would generate 403 

damaging level of toxic oxygen species, such as hydroxyl radicals and peroxides. Additionally, the F. 404 

acidiphilum YT cytoplasm would become overloaded by organic compounds, which could provoke the 405 

cell death by dehydration.  406 

Additionally to the oligotrophic adaptation, the growth was not detected on the yeast extract alone 407 

without ferrous iron, which serves as the electron donor1,5. Taken together, these data point to F. 408 

acidiphilum YT as an obligate peptidolytic chemomixotrophic oligotroph. 409 

F. acidiphilum YT genome does not harbour any of known pathways of CO2 fixation, thus suggesting 410 

that the capability of F. acidiphilum to assimilate inorganic carbon1,51 is probably a result of anaplerotic 411 

CO2 assimilation. An intriguing point to mention is the ubiquity of F. acidiphilum with their remarkable 412 

conservation of genomes. The ability to iron oxidation is solely characteristic to Ferroplasmaceae 413 

family members among all up to date cultivated and studied Thermoplasmatales archaea, which 414 

represents a certain advantageous/niche speciation trait and might contribute to the broad distribution of 415 

these archaea. This is in a strong contrast with Picrophilus or Thermogymnomonas spp. that have so far 416 

been detected exclusively on Japanese Isles.  417 

One could speculate on another argument for the possible ancient origin of these archaea reflected in 418 

amino acid/peptides dependence, which was suggested to exist in first heterotrophs and which seems to 419 

be linked to sulfur-containing environments56. In concordance with this hypothesis, the genes for several 420 

protein families from an apparent ancient anaerobic core of the LUCA, e.g. for ferredoxin, several 421 

subunits of the Mrp-antiporter/hydrogenase family, numerous S-adenosyl methionine (SAM) dependent 422 

methyltransferases that rarely occur in aerobic prokaryotes35,36, were found in the F. acidiphilum YT 423 

genome.  424 
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One of the interesting observations was a relatively high number of single nucleotide substitutions in the 425 

genome of F. acidiphilum YT after ~550 generations in vitro. We hypothesize that such a high mutation 426 

rate could be caused by faster growth rates under optimal conditions in the culture, which is untypical 427 

for these archaea in their real life in natural habitats where they tend to exhibit a remarkable genomic 428 

conservation even in geographically distant populations. Analysis of nucleotide substitutions suggests 429 

that the genome is prone to the further decrease in GC content. The ratios of synonymous to non-430 

synonymous amino acid substitutions and the distribution of single nucleotide substitutions between 431 

coding and non-coding regions suggest that at least under optimal cultivation conditions, the neutral 432 

drift is a prevalent mode of the genome evolution in vitro. This hypothesis certainly requires a deeper 433 

experimental analysis with parallel cell lines run in continuous bioreactors and for a greater number of 434 

generations.  435 

 436 

Methods 437 

Reference strain and growth conditions 438 

F. acidiphilum YT (DSM 12658T) was deposited to the DSMZ collection in 1998, and since then 439 

maintained in the laboratory, in 2008 the original isolate was retrieved from DSMZ for genome 440 

sequencing. F. acidiphilum YT was routinely grown on the Medium 9K containing 25 g/l of 441 

FeSO4.7H2O, supplemented with 0.02 % (w/vol) of yeast extract until the mid-exponential phase at as 442 

described previously1. For calculation of single substitution mutation rates, the 100-ml cultures were 443 

grown in Erlenmeyer flasks under optimal conditions1 since deposition of the strain to the DSMZ Strain 444 

Culture collection in 1998. As an inoculum, 10 ml of culture were used each time, with 164 repeated 445 

growth experiments. The final culture (2008) was subjected to the DNA extraction and sequencing. 446 

Isolation of DNA from both variants was conducted using Genomic DNA isolation kit (QIAGEN, 447 

Hilden, Germany).  448 

Sequencing and assembly 449 
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De novo sequencing data production of F. acidiphilum YT was conducted at the Liverpool University 450 

Genome Centre on a 454 FLX Ti (454 Life Sciences, Branford, CT, USA) using a standard library (34 451 

x) coverage. In addition, a library sequencing using Illumina 2000 was done at Fidelity Systems (short 452 

paired-end 400 bp, av. read 100, coverage x 639) and at the Sequencing Facility of the Helmholtz Centre 453 

for Infection Research (Braunschweig, Germany) (single end, 36 nt in average, x 233 coverage). 454 

Genome assembly and gap closure were performed by Fidelity Systems Ltd. (Gaithersburg, MD, USA) 455 

using Phred/Phrap and Consed57,58,59 have been operated for the final sequence assembly. DupFinisher60 456 

was used for the correction of repeat mis-assemblies and 384 Sanger end-sequenced fosmids for the 457 

generation of a single scaffold (0.98 x coverage). For the full closure, a number of direct sequencing 458 

reactions has been conducted61. The genome was automatically annotated at Fidelity Systems (USA) 459 

using Fgenesb:2.0 and manually curated using GenDB v. 2.2.1 annotation system Ribosomal RNA 460 

genes were identified via BLAST searches62 against public nucleotide databases and transfer RNA 461 

genes using tRNAScan-SE v. 1.2163. The CRISPRFinder web service was used for the identification of 462 

CRISPRs64. The genome of F. acidiphilum YT variant grown in the lab for ~550 generations was 463 

sequenced using Illumina (average coverage: 233) and was further mapped on the assembled type strain 464 

genome. The genome sequence of F. acidiphilum YT has been deposited to the GenBank/EMBL/DDBJ 465 

with the accession number CP015363. 466 

RNA isolation and quantitative reverse transcription PCR analysis (Q-RT-PCR).  467 

Q-RT-PCR was used to estimate the abundance of ten target genes transcripts (Table S1). F. 468 

acidiphilum YT cells were collected after 4 days (corresponding to onset of stationary phase) by 469 

centrifugation at 9000 rpm for 15 min of 15 - 25 ml culture and total RNA was immediately purified 470 

using miRVANA kit (Ambion). RNA samples were treated with Turbo DNA-free kit (Ambion Austin, 471 

TX, USA). To eliminate the residual DNA contamination present in the RNA preparations, a second 472 

DNase treatment (DNase I, Invitrogen) was included prior to complementary DNA (cDNA) production. 473 

cDNA synthesis was performed with SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, 474 
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USA) with 100 ng of total RNA and 2 pmol of Random Hexamer Primer (Thermo Fisher Scientific) 475 

according to the manufacturer’s instruction. All RT-PCR experiments were performed using an ABI 476 

7500 Fast Real-Time PCR System thermocycler. Gene-specific primers and TaqMan® probes (Table 477 

S1) were designed using Primer Express® software v.2.0 (Applied Biosystems, USA). 5’-6-FAM and 3’-478 

BHQ1 labelled TaqMan® probes were obtained from Biomers (Germany). RNA samples were tested in 479 

triplicates along with “No Template Control” (NTC). The reaction mixtures for Taqman® Q-RT-PCR 480 

were as follows: 0.3 μM final concentration of each primer, 0.2 μM TaqMan probe, cDNA template 481 

equivalent to 1 ng of RNA starting material, 12.5 μl of 2X TaqMan® 5 Universal PCR Master Mix (PE 482 

Applied Biosystems) and ultrapure water added to the final volume of 25 μl. The reactions were 483 

performed under the following conditions: 2 min at 50 °C followed by 10 min at 95 °C, followed by 40 484 

cycles of 15 s at 95 °C and 1 min at 60 °C. PCR specificity and product detection was checked by 485 

examining the temperature-dependent melting curves of the PCR products and by sequencing of cloned 486 

amplicons.  487 

Generation of quantitative data by RT-PCR is based on the number of cycles needed for amplification-488 

generated fluorescence to reach a specific threshold of detection (the Ct value). RT-PCR amplification 489 

was analysed using an automatic setting for the baseline and threshold values and using the relative 490 

standard curve method. Standards for all amplifications were prepared using known amounts of cloned 491 

target templates. Amplicons were generated by PCR amplification of the target genes from genomic 492 

DNA. The resulting amplicons were then purified using the Wizard SV Gel and PCR Clean–up System 493 

kit (Promega, Madison, WI, USA), and cloned in pGEM®-T Easy Vector System I (Promega). After 494 

cloning, plasmids were extracted using the QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany) and 495 

DNA concentrations were measured using a Nanodrop® ND-1000 spectrophotometer. Standard curves 496 

were based on serial dilution ranging between 107 and 101 gene copies. Ct values were then 497 

automatically generated by software and exported for calculation of average Ct and standard deviation 498 

(SD) values of triplicates. The comparative method using gyrB mRNA as the normalizer was performed 499 
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as described elsewhere65. For normalization based on multiple, most stably expressed housekeeping 500 

genes, we used a ribosomal pL2 gene, which has equal to gyrB reaction efficiency (E) value of 1.9066,67.  501 
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 685 

Figure legends 686 

Figure 1. The genome genomic islands (GI) of F. acidiphilum YT. Localization of GIs on the chromosome of F. 687 
acidiphilum YT, as predicted by SWGIS (pink boxes), IslandViewer (blue boxes) and GOTHAM (yellow boxes). Histograms 688 
in the inner cycles of the atlas depict variations of the following oligonucleotide usage parameters: GC-content (black curve); 689 
ratio of generalized to local relative variances calculated for tetranucleotide usage patterns normalized by the GC-content 690 
(blue curve, n1_4mer:GRV/n1_4mer:RV); distances between not-normalized local tetranucleotide usage pattern and the 691 
global one calculated for the complete chromosome (red curve, n0_4mer:D); asymmetry between not-normalized 692 



29 
 

tetranucleotide usage patterns calculated for the direct and complement DNA strands (green curve, n0_4mer:PS). Use of 693 
these parameters for GI identification and their standard abbreviations were explained in more detail68. Green arrowheads 694 
(outer circle) indicate single-nucleotide substitutions in the genome of F. acidiphilum YT after ~550 generations in the 695 
laboratory culture (s. Supplementary Table S2 for more details).  696 
 697 
Figure 2. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus in F. acidiphilum YT with one 698 
operon encoding the CRISPR-associated (Cas) proteins (red arrows). CRISPR system belongs to the Subtype I-D. Ten genes 699 
not related to CRISPR are shown in grey. The cluster CRISPR1 contains 137 identical direct repeats of 30 bp separated by 700 
136 different spacers of 34-39 bases. The Cluster CRISPR2 is shorter and has 31 direct repeats (31 bp each) with 30 different 701 
spacers (35-62 nt). Spacers and repeats in Clusters 1 and 2 show no sequence similarity one to another. 702 
 703 
Figure 3. Single-nucleotide mutations accumulated during cultivation of F. acidiphilum YT. Base-substitutional 704 
mutation rates per site per generation plotted vs genome sizes. The data on mutation rates of unicellular organisms and 705 
viruses and the regression plot (log10u=-8.66-1.096log10G, where u and G are mutation numbers and genome size, 706 
respectively) are taken from29. Single-stranded DNA viruses: φX174, phage phi174; M13, phage M13. Double-stranded 707 
DNA viruses: λ, phage lambda; T2, phage T2; T4, bacteriophage T4, Hs 1, Herpes simplex virus. Bacteria: Bsu, Bacillus 708 
subtilis; Ban, Bacillus anthracis; Dra, Deinococcus radiodurans; Hpy, Helicobacter pylori; Mfl, Mesoplasma florum; Mtu, 709 
Mycobacterium tuberculosis; Pae, Pseudomonas aeruginosa; Sen, Salmonella enterica; Stu, Salmonella typhimurium; Tth, 710 
Thermus thermophilus. Archaea: Fad, Ferroplasma acidiphilum; Hvo, Haloferax volcanii; Sac, Sulfolobus acidocaldarius. 711 
Eukarya: Cre, Chlamydomonas reinhardtii; Ncr, Neurospora crassa; Pfa, Plasmodium falciparum; Sce, Saccharomyces 712 
cerevisiae; Spo, Schizosaccharomyces pombe; Tbr, Trypanosoma brucei; Pte, Paramecium tetraurelia. Pink area reflects the 713 
distribution of mutation rates in Ferroplasma with the higher point value corresponding to all detected base substitutions in 714 
the strain cultured for ~550 generations as compared with the original genome, and lower value representing the most 715 
conservative mutation rate prediction (all mutations with frequency values <5% and SNPs in the original genome were 716 
excluded). 717 
 718 
Figure 4. Proposed citric acid cycle and related enzyme reactions in F. acidiphilum YT. The enzymes are as follows: 1, 719 
pyruvate kinase (FAD_1603); 2, PEP carboxykinase (FAD_1050); 3, PEP carboxylase (FAD_1044); 4, NAD-binding malic 720 
enzyme / malate dehydrogenase (FAD_0703); 5, pyruvate : ferredoxin oxidoreductase (FAD_0567-0568); 6, citrate synthase 721 
(FAD_1100); 7, aconitate hydratase (FAD_0701); 8, isocitrate dehydrogenase (FAD_1632); 9, 2-oxoglutarate:ferredoxin 722 
oxidoreductase (FAD_0712-0713); 10, succinyl-CoA synthetase (FAD_0709-710); 11, succinate dehydrogenase 723 
(FAD_0714-0717 ); 12, fumarate hydratase (FAD_1630); 13, malate dehydrogenase (FAD_0718); 14, glutamate 724 
dehydrogenase (FAD_0434); 15, aspartate aminotransferase (FAD_1098); 16, phosphoenolpyruvate synthase (FAD_1233); 725 
17, phosphoglycerate mutase (FAD_0440, FAD_1169, FAD_1350); 18, 2-phosphoglycerate kinase (FAD_1810); 19, 726 
glyceraldehyde-3-phosphate dehydrogenase (FAD_0549); 20, triosephosphate isomerase (FAD_0107); 21, fructose-2,6-727 
bisphosphatase (FAD_0332); 22, 6-phosphofructokinase (FAD_0353); 23, bifunctional phosphoglucose/phosphomannose 728 
isomerase (FAD_0562); 24, phosphoglucomutase/phosphomannomutase (FAD_0602); 25, transketolase (FAD_1477-1476); 729 
26, transaldolase (FAD_1201; FAD_1475); 27, ribulose-phosphate 3-epimerase (FAD_0295). Abbreviations used: Fd, 730 
electron carrier ferredoxin; NAD, nicotinamide adenine dinucleotide; CoA, Coenzyme-A; PEP, phosphoenolpyruvate; UQ, 731 
ubiquinone. Enzymes labeled in blue are potentially involved in anaplerotic assimilation of CO2. Their relative expression 732 
levels, analysed by RT-qPCR and indicated by the numbers in the central box, were obtained by normalization of the total 733 
RNA added and using transcripts of DNA gyrase subunit B (gyrB) as the internal reference (value 1.0). Normalization using 734 
gyrB was additionally validated vs transcripts of gene for ribosomal L2 protein. Average normalisation data derived from 735 
triplicates with standard deviation below 5%.  736 
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