3 research outputs found

    Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity

    Get PDF
    Inefficient cytosolic delivery and vector toxicity contribute to the limited use of antisense oligonucleotides (ASOs) and siRNA as therapeutics. As anthrax toxin (Atx) accesses the cytosol, the purpose of this study was to evaluate the potential of disarmed Atx to deliver either ASOs or siRNA. We hypothesized that this delivery strategy would facilitate improved transfection efficiency while eliminating the toxicity seen for many vectors due to membrane destabilization. Atx complex formation with ASOs or siRNA was achieved via the in-frame fusion of either Saccharomyces cerevisiae GAL4 or Homo sapien sapien PKR (respectively) to a truncation of Atx lethal factor (LFn), which were used with Atx protective antigen (PA). Western immunoblotting confirmed the production of: LFN-GAL4, LFn-PKR and PA which were detected at ~ 45.9 kDa, ~ 37 kDa, and ~ 83 kDa respectively and small angle neutron scattering confirmed the ability of PA to form an annular structure with a radius of gyration of 7.0 ± 1.0 nm when placed in serum. In order to form a complex with LFn-GAL4, ASOs were engineered to contain a double-stranded region, and a cell free in vitro translation assay demonstrated that no loss of antisense activity above 30 pmol ASO was evident. The in vitro toxicity of both PA:LFn-GAL4:ASO and PA:LFn-PKR:siRNA complexes was low (IC50 > 100 μg/mL in HeLa and Vero cells) and subcellular fractionation in conjunction with microscopy confirmed the detection of LFn-GAL4 or LFn-PKR in the cytosol. Syntaxin5 (Synt5) was used as a model target gene to determine pharmacological activity. The PA:LFn-GAL4:ASO complexes had transfection efficiency approximately equivalent to Nucleofection® over a variety of ASO concentrations (24 h post-transfection) and during a 72 h time course. In HeLa cells, at 200 pmol ASO (with PA:LFN-GAL4), 5.4 ± 2.0% Synt5 expression was evident relative to an untreated control after 24 h. Using 200 pmol ASOs, Nucleofection® reduced Synt5 expression to 8.1 ± 2.1% after 24 h. PA:LFn-GAL4:ASO transfection of non- or terminally-differentiated THP-1 cells and Vero cells resulted in 35.2 ± 19.1%, 36.4 ± 1.8% and 22.9 ± 6.9% (respectively) Synt5 expression after treatment with 200 pmol of ASO and demonstrated versatility. Nucleofection® with Stealth RNAi™ siRNA reduced HeLa Synt5 levels to 4.6 ± 6.1% whereas treatment with the PA:LFn-PKR:siRNA resulted in 8.5 ± 3.4% Synt5 expression after 24 h (HeLa cells). These studies report for the first time an ASO and RNAi delivery system based upon protein toxin architecture that is devoid of polycations. This system may utilize regulated membrane back-fusion for the cytosolic delivery of ASOs and siRNA, which would account for the lack of toxicity observed. High delivery efficiency suggests further in vivo evaluation is warranted

    An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin

    Get PDF
    The catechin, epigallocatechin gallate (eGCG), found in green tea, has inhibitory activity against a number of protein toxins and was investigated in relation to its impact upon ricin toxin (RT) in vitro. The IC50 for RT was 0.08 ± 0.004 ng/mL whereas the IC50 for RT + 100 μM eGCG was 3.02 ± 0.572 ng/mL, indicating that eGCG mediated a significant (p < 0.0001) reduction in ricin toxicity. This experiment was repeated in the human macrophage cell line THP-1 and IC50 values were obtained for RT (0.54 ± 0.024 ng/mL) and RT + 100 μM eGCG (0.68 ± 0.235 ng/mL) again using 100 μM eGCG and was significant (p = 0.0013). The documented reduction in ricin toxicity mediated by eGCG was found to be eGCG concentration dependent, with 80 and 100 μg/mL (i.e. 178 and 223 μM respectively) of eGCG mediating a significant (p = 0.0472 and 0.0232) reduction in ricin toxicity at 20 and 4 ng/ml of RT in Vero and THP-1 cells (respectively). When viability was measured in THP-1 cells by propidium iodide exclusion (as opposed to the MTT assays used previously) 10 ng/mL and 5 ng/mL of RT was used. The addition of 1000 μM and 100 μM eGCG mediated a significant (p = 0.0015 and < 0.0001 respectively) reduction in ricin toxicity relative to an identical concentration of ricin with 1 μg eGCG. Further, eGCG (100 μM) was found to reduce the binding of RT B chain to lactose-conjugated Sepharose as well as significantly (p = 0.0039) reduce the uptake of RT B chain in Vero cells. This data suggests that eGCG may provide a starting point to refine biocompatible substances that can reduce the lethality of ricin

    The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery

    Get PDF
    Introduction: The potential of gene replacement therapy has been underscored by the market authorization of alipogene tiparvovec (Glybera) and GSK2696273 (Strimvelis) in the EU and recombinant adenovirus-p53 (Gendicine) in China. Common to these systems is the use of attenuated viruses for ‘drug’ delivery. Whilst viral delivery systems are being developed for siRNA, their application to antisense delivery remains problematic. Non-viral delivery remains experimental, with some notable successes. However, stability and the ‘PEG dilemma’, balancing toxicity and limited (often liver-tropic) pharmacokinetics/oharmacodynamics, with the membrane destabilizing activity, necessary for nucleocytosolic access and transfection remain a problem. Areas covered: Here we review the use of attenuated protein toxins as a delivery vehicle for nucleic acids, their relationship to the PEG dilemma, and their biological properties with specific reference to their intracellular trafficking. Expert opinion: The possibility of using attenuated toxins as antisense and siRNA delivery systems has been demonstrated in vitro. Systems based upon attenuated anthrax toxin have been shown to have high activity (equivalent to nucleofection) and low toxicity whilst not requiring cationic ‘helpers’ or condensing agents, divorcing these systems from the problems associated with the PEG dilemma. It remains to be seen whether these systems can operate safely, efficiently and reproducibly, in vivo or in the clinic
    corecore