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Abstract.  

Introduction: The potential of gene replacement therapy has been underscored by 
the market authorisation of alipogene tiparvovec (Glybera) and GSK2696273 
(Strimvelis) in the EU and recombinant adenovirus-p53 (Gendicine) in China. 
Common to these systems is the use of attenuated viruses for “drug” delivery. Whilst 
viral delivery systems are being developed for siRNA, their application to antisense 
delivery remains problematic. Non-viral delivery remains experimental, with some 
notable successes. However, stability and the “PEG dilemma”, balancing toxicity and 
limited (often liver-tropic) PK-PD, with the membrane destabilising activity, necessary 
for nucleocytosolic access and transfection remain a problem.  

Areas Covered: Here we review the use of attenuated protein toxins as a delivery 
vehicle for nucleic acids, their relationship to the PEG-dilemma, and their biological 
properties with specific reference to their intracellular trafficking.  

Expert opinion: The possibility of using attenuated toxins as antisense and siRNA 
delivery systems has been demonstrated in vitro. Systems based upon attenuated 
anthrax toxin have been shown to have high activity (equivalent to nucleofection) and 
low toxicity whilst not requiring cationic “helpers” or condensing agents, divorcing 
these systems from the problems associated with the PEG dilemma. It remains to be 
seen whether these systems can operate safely, efficiently and reproducibly, in vivo 
or in the clinic.  
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Abbreviations. 

(AAV) Adeno-Associated Virus, (ASO) Antisense oligonucleotide, (Atx) Anthrax toxin, 
(BoNT) Clostridium botulinum toxin, (CPPs) Cell penetrating peptides, (C) Catalytic 
domain, (CMG2) Capillary morphogenesis protein 2  (CT) Cholera toxin, (DEAE) 
Diethyl aminoethyl, (DT) Diphtheria toxin, (EF) Oedema factor, (EF-2) Elongation 
factor-2, (EGFR) Epidermal growth factor receptor, (EMA) European Medicines 
Agency, (FDA) U.S. Food and Drug Administration, (Gel) Gelonin, (ILV) Intraluminal 
vesicle, (IPEC) Interpolyelectrolyte complexes, (ITGB1) Integrin beta-1, (LF) Lethal 
Factor, (LPLD) Lipoprotein lipase deficiency, (LPL) Lipoprotein lipase, (MVBs) 
Multivesicular bodies, (NSF) N-ethylmaleimide-sensitive factor, (PA) Protective 
antigen, (PAP) Pokeweed antiviral protein, (PEA) Pseudomonas exotoxin A, (PEG) 
Polyethylene glycol, (PEI) Poly(ethyleneimine), (PK-PD) Pharmacokinetics and 
pharmacodynamics, (PLL) Poly(L-lysine), (PNA) Protein nucleic acid, (PT) Pertussis 
toxin, (R) Receptor-binding domain, (RIPs) Ribosome-inactivating proteins, (RNAi) 
RNA interference, (RT) Ricin holotoxin, (RTAC) RT a chain, (RTBC) RT b chain, 
(SNARE) Soluble NSF attachment protein receptors, (ST) Shiga toxin, (SLNs) Solid 
core lipid nanoparticles, (T) Trans-membrane domain, (TEM8) Tumour endothelial 
marker 8, (TeNT) Clostridium tetani toxin, (VAMP) Vesicle-associated membrane 
protein. 
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Article highlights. 

This paper covers:  

1) The deferential between the challenges associated with gene and siRNA / 
antisense delivery.  

2) Why this differential is important within the context of existing rate limits to non-
viral therapy i.e. the PEG dilemma.   

3) The use of protein toxins as part of non-viral DNA delivery systems.  

4) How toxins navigate the endomembrane system.  

5) Recent successes using toxins to deliver siRNA and antisense oligonucleotides. 

 

1.0 Introduction.   

Nucleic acid drugs may be thought of loosely as gene replacement “drugs” or entities 
that can directly modulate the expression of existing genes [1]. The former is referred 
to as gene replacement therapy or “gene therapy” whilst there are many ways to 
achieve the modulation of gene expression via the application of conventional or, 
nucleic acids “drugs” [1]. The term “antisense” within the context of a gene-
modulating tool first appeared in PubMed in 1972, [2] some 26 years before the 
appearance of the term RNA interference (RNAi) [3].   

Antisense therapeutics: Antisense gene modulation requires the binding of single 
stranded antisense oligonucleotide (ASO) or analogues thereof [4], to mRNA, which 
has the effect of blocking mRNA expression and also (in some instances), inducing 
the destruction of the mRNA via RNase H [5]. Target specificity (hybridisation), is 
driven by the sequence of the ASO which is typically a single stranded molecule, of 
19-21 base pairs in length. The antisense sequence is in the reverse complementary 
orientation to the target sequence, hence the designation “antisense” relative to the 
“sense” configuration of the mRNA sequence [2]. This is distinct from an “antigene” 
or “gene silencing” strategy, which seeks to prevent the synthesis of mRNA via the 
hybridisation of an oligonucleotide within the major groove of the target gene [6]. This 
gene silencing operation is limited by: (1) a requirement for either a homopurine or 
homopyrimidine gene sequence to foster the Hoogsteen (or reverse Hoogsteen) 
bonding necessary to generate a stable DNA triplex and (2) the thermodynamic 
stability of the triplex, which often requires additional stabilisation to remain intact [6]. 
Consequently, gene silencing per se will not be further considered herein, though a 
wealth of literature exists covering this subject [6&7]. 

RNAi therapeutics: The phenomena of RNAi requires (evolutionarily) well-
conserved, specific machinery to mediate gene down-regulation, and may have 
evolved as a way to interrupt viral replication [3]. RNA interference (RNAi) requires 
the cytoplasmic delivery of double stranded RNA (or a suitable RNA analogue), 
which interacts with the RNase III enzyme Dicer [8]. Dicer cleaves double-stranded 
RNA into siRNA. Cleaved siRNA is typically 22-25 base pairs long and contains a 
characteristic 2 base 3’ overhang, making this molecule suitable for loading into the 
RNA-induced silencing complex (RISC) [9]. Once loaded into RISC, one of the RNA 
strands is removed and degraded, leaving a “guide strand” that will, by virtue of 
reverse complementarity, hybridise specifically with “target” message RNA [9]. Guide 
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strand selection is driven by the base pairing stability, i.e. the GC content, of the 5’ 
terminus of the RNA duplex, suggesting a role for Dicer during the selection of the 
guide strand [9]. The liberation of the RISC associated non-guide strand from the 
RISC::RNA complex (and RNA duplex) allows the hybridisation of the RNA guide 
strand :: RISC complex with the target mRNA, and facilitating the activities of the Piwi 
domain of the Argonaute 2 protein “slicer”, mediating mRNA cleavage and 
expressional silencing [9].  

 

1.1 Clinical relevance of gene replacement or modulating technologies.  

The first licensed gene therapy was an adenovirus-based medicine that delivered a 
functional copy of the P53 gene via recombinant adenovirus-p53 ((Gendicine); 
Shenzhen SiBiono Gene Technologies) to treat head and neck squamous cell 
carcinoma and was licensed for use in China in 2003 [10]. The successful licensing 
of GSK2696273 (GSK) [11] and alipogene tiparvovec (UniQure) [12] within the 
European Union underscore the prospect of gene therapy becoming a reality.  
GSK2696273 was licensed to treat severe combined immunodeficiency due to 
adenosine deaminase deficiency in April 2016 [11] and is a gammaretrovirus 
containing the human adenosine deaminase gene. Alipogene tiparvovec utilises a 
non-replicating Adeno-Associated Virus (AAV) 1 vector to deliver a functional copy of 
the lipoprotein lipase (LPL) gene to treat lipoprotein lipase deficiency (LPLD) [12]. 
The U.S. Food and Drug Administration (FDA) approval of three antisense drugs; 
Fomivirsen (Vitravene, previously ISIS 2922) [13], Alicaforsen (previously ISIS 2302) 
[14], & Mipomersen (Kynamro, previously ISIS 301012) [15], the voluntary withdrawal 
from the market of Fomivirsen in 2002 [16], and the failure of the European 
Medicines Agency (EMA) to approve Mipomersen in 2013 [17], points to much 
unlocked potential associated with these technologies. Although there has not been 
a licenced medicine based upon siRNA technology, there are several potential 
medicines undergoing phase I, II and III evaluation, the most notable of which are 
listed (Table 1). To date there are 138 clinical studies linked to the word “antisense” 
(on https://clinicaltrials.gov), and 41 trials using the term “siRNA”. The progress of 
various RNAi-based drugs through clinical trial has also recently been reviewed [18]. 

Many of the problems associated with the use of both siRNA and antisense 
technologies may be solved through the use of medicinal chemistry; stabilising 
molecules against nuclease degradation and reducing immunogenicity. The need for 
advanced drug delivery technology [19], enhancing pharmacokinetics and 
pharmacodynamics (PK-PD), cell targeting and intracellular (cytosolic) translocation 
is also becoming apparent for not only siRNA but also antisense agents [20]. 
However, even if these problems are solved in such a way that the bioaccumulation 
of these entities is circumvented, cytosolic access circumventing the polyethylene 
glycol (PEG) dilemma remains an issue [20,21,22]. The pleiotropic nature of protein 
targets must also be considered. Undesirable, indirect (as opposed to direct) effects 
of gene knockdown may be problematic, though may be less of a concern if the 
intended target is exogenous (i.e. viral in origin). Before these problems are evident, 
a larger one remains to be solved, and that is the safe and reproducible delivery of a 
nucleic acid drug to the correct intracellular compartment in the appropriate tissue 
type. 
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1.2 Is advanced drug delivery technology needed?  

There are several rate limits that have prevented ASO and siRNA technologies from 
becoming a first line medicine, and at the centre of this problem lies bioavailability 
[20]. Bioavailability is a problem on account of the susceptibility of both DNA and 
RNA to nuclease attack in biological fluids, including those within the endolysosome 
and the cytosol [4,19]. Further, the PK-PD associated with these molecules and their 
inability to cross biological membranes such as phospholipid bilayers contribute 
significantly to this problem. Medicinal chemistry has gone a long way to addressing 
the stability of these potential “drugs” in biological fluids and the intracellular 
environment, yet the problems of cell or even tissue targeting as well as access to 
the cytosol remain [4, 20, 21, 22].  

In the instance of siRNA and ASOs, backbone modification may negate the need for 
nuclease stabilising agents, potentially impacting upon the “PEG dilemma”, 
described later in this article [22,23] (section 1.4). Where exogenous genes are being 
targeted i.e. those of viruses, target specificity should be exquisite, driven by the 
sequence of the drug. However, to realise the full potential of these therapeutic 
modalities, the ASO / siRNA needs to be in the correct compartment within the 
correct cell [20, 22]. Given that after endocytic uptake, from a topological point of 
view, the ASO is still on the wrong side of a biological membrane i.e. within the 
lumen of an endocytic vesicle, (and is heading towards the catabolic endolysosome), 
something needs to be done to improve ASO cytosolic access [24]. 

If the toxicity and intracellular dynamics of ricin toxin are considered, especially ricin 
toxin a chain (RTAC) relative to ricin holotoxin (RT) [25, 26], the benefits, vis-a-vis 
enhanced navigation of the endomembrane system, cytosolic delivery and target 
assimilation become obvious. This is reflected in the enhanced IC50 of RT relative to 
RTAC. RT shows a 1000+ times decrease in IC50 relative to RTAC in Vero [25], a 
126 times decrease in IC50 in THP-1 cells [25] and an approximately 5-fold decrease 
in B16F10 cells [26]. These numbers are lent further poignancy when the efficiency 
of the RT b chain (RTBC)’s ability to deliver RTAC to the ER (and eventually the 
cytosol) is considered [25]. In the instance of RT, only 5% of the internalised ricin has 
been measured within the Golgi (en route to the cytosol), with the balance following 
the default route to the endolysosome and catabolic destruction or being subject to 
exocytosis [27]. Regardless of the efficiency of this cytosolic delivery system, and 
considering the enzymatic potency of RTAC, the benefits of cytosolic delivery are 
here underscored. If the toxicity of type II ribosome-inactivating proteins (RIPs) i.e. 
RIPS with lectinic activity are considered, relative to type I RIP’s such as gelonin [26], 
again the enhancements in toxicity are profound. 

The need for the cytosolic delivery of other “large molecules” was further 
underscored when the intracellular trafficking of both synthetic- (non-cationic), and 
bio-polymers was examined. In the instance of fluorescently labelled  -HPMA, -
dextrin, -dextran or -bovine serum albumin [28], fluorescence can be readily detected 
within (endocytic) membrane delineated compartments, specifically those identified 
by the late endocytic marker LAMP1 and LAMP2 [28]. This is in agreement with the 
literature defining the subcellular localisation (over time) of radiolabeled polymers, 
colloidal gold and IgG [29, 30] as defined by subcellular fractionation and microscopy. 
The distribution of these macromolecules is in contrast to fluorescently labelled, 
attenuated anthrax toxin [23], which can be readily detected within the cytosol both 
microscopically and using subcellular fractionation, controlling for non-specific 
membrane interactions at the cell surface giving false positive readings during the 
microscopy [23].  
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In relation to efficiency, it is interesting to note that in vitro, often as much as 20% 
gene knock-down has been reported at higher concentrations of ASOs and RNAi 
analogues without any sort of cytosolic delivery system [23]. However, it also needs 
to be noted that the efficiency of cytosolic access is highly cell type dependent [31], 
that these cells are in exponential growth phase and, in all probability, are not 
representative of the in vivo milieu [4]. Without the aid of a delivery system, ASOs 
may be dependent upon “leaky” vesicle fusion to escape the endocytic system [32]. 
Within healthy cells, leaky vesicle fusion appears to be an event that is of low 
probability, on account of the need to:  (1) compartmentalise and contain the content 
of the endolysosome, as well as (2) efficiently sort cargo within the cell i.e. during 
lysosome biogenesis [33]. It may also account for the relative inefficiency and high 
doses of ASOs  / siRNA analogues required clinically. 

 

1.3 Advanced drug delivery strategies for nucleic acid therapeutics.  

The potential of not only gene or protein replacement therapy, but also being able to 
control the expression levels of exogenous as well as endogenous genes is vast. 
However in order to realise the potential of these phenomena, the safe, efficient and 
reproducible introduction of functional nucleic acids into the nucleocytosolic 
compartments of human cells needs to be realised in vivo [24]. Given the enormous 
humanitarian and commercial potential of realising the above ambition, the scientific 
community has been trying to develop both viral and non-viral nucleic acid delivery 
technology for roughly 30 years [21, 22]. These efforts have met with varying 
degrees of success [22]. Given that the market for advanced drug delivery systems 
was estimated to be worth  $227.3 billion USD by 2020 [34] and that this figure is 
aside from the value of the medicine being delivered, there is plenty of impetus to 
move this technology forward. The market for RNAi based medicines was, in 2011, 
forecast to reach $4.04bn by 2017 prior to a single siRNA based drug being FDA 
approved [35]. 

Since the 1980s there has been an explosion in the literature base, describing the 
generation and characterisation of non-viral drug delivery systems, evaluating first 
the interaction of DNA with (model histones i.e. poly(L-lysine) (PLL) ) [36] and then 
the transfection potential of numerous polycations. The interactions of a large 
molecule such as DNA with molecules as simple as water are complex and have 
been described in some detail [37]. However, the ability to formulate DNA into 
transfection competent interpolyelectrolyte complexes (IPEC) [37,38] (or polyplexes) 
[39] is even more complex, though possible to describe and reproduce. These 
endeavours have evolved from the use of protamine sulphate [40], diethyl aminoethyl 
(DEAE)-dextran [41], to PLL [42], poly(ethyleneimine) (PEI) [43] and eventually to 
cell penetrating peptides (CPPs) [44], amphiphilic polymers [45] and dendrimers [46]. 

Similarly, much interest has been shown in the use of cationic and “helper” lipids to 
deliver DNA, forming “lipoplexes” [47]. The chemistry of these formulations is also 
complex with fatty acid tail length, degree of saturation and other modifications [48], 
as well as the method of formulation (such as nitrogen to phosphate ratio) impacting 
upon transfection efficiency [47]. As previously described the non-viral advanced 
drug delivery field has moved as far as phase III clinical trials (Table 1) and one 
notable success is GalNAk [49].  GalNAk utilises the high density of a liver 
parenchymal cell-specific receptors (i.e. the asialoglycoprotein receptors) expressed 
upon hepatocytes [50]. These receptors are expressed at densities of approximately 
5x105 per cell though this number varies in a liver location dependent way [50]. The 
asialoglycoprotein receptor, which usually scavenges spent proteinatious material 
from the systemic circulation for delivery and catabolism within the endolysosome 
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[51], interacts with the three galactose groups conjugated to the siRNA duplex [49]. 
This makes GalNAk constructs very good at delivering siRNA to hepatocytes, though 
there is not an obvious way for the siRNA conjugated to this construct to exit the 
endomembrane system once subject to endocytic capture. As there is a measurable 
benefit to using this technology in vivo [49], it is obvious that more siRNA is reaching 
its target. It is possible that the GalNAk is increasing the intravascular i.e. 
intraendosomal concentration of siRNA which is then better able to exploit “leaky” 
vesicle fusion [32]. The prospect of being able to target non-hepatocyte cells is 
limited. However at this time, and in the absence of evidence and empirical study, 
this commentary is at this point in time conjecture. 

There have been many rate limits identified when investigating the use of polyplex 
and lipoplex-based delivery systems, which have issues with stability, PK-PD and 
toxicity [52]. These rate limits are a product of the charge associated with these 
molecules and in the instance of IPEC “polyplexes” have been termed the PEG-
dilemma [22] (see section 1.4).  

Stepping out from the PEG-dilemma and in addition to GalNAk, there are solid core 
lipid nanoparticles (SLNs) also in phase I-III clinical trials (Table 1) for the delivery of 
siRNA, as well as liposomal technologies based upon Smarticles [53]. SLNs are lipid 
particles typically 100 nm in diameter stabilised via the addition of several types of 
agent such as cholesterol or surfactants [54]. It is this stabilisation that’s proposed to 
give these entities an advantage over polymeric or cationic systems [54].  

1.4 The poly(ethylene glycol) (PEG) dilemma. 

The use of charged material to deliver nucleic acids to the nucleocytosolic 
compartment is now relatively well understood and has reached a dichotomy 
attempting to balance toxicity with transfection activity [22]. Both toxicity and 
transfection activity are products of the intrinsic positive charge and the density of 
positive charges within a macromolecule. In brief this is due to the need for the 
molecule to breach or rupture membranes delineating specific intracellular 
compartments in order to mediate transfection. This is caused by positively charged 
groups within the delivery system, which interact with negatively charged membrane 
components [22]. This binding causes membrane destabilisation not only within the 
endolysosomal compartment (allowing the release of proapoptotic enzymes [45]) but 
also at the plasma membrane [55&56]. Given the more recent discoveries regarding 
the biology of the endolysosomal compartments, the “proton sponge hypothesis 
seems an unlikely explanation of membrane destabilisation [57]. Polycation mediated 
plasma membrane damage also causes toxicity and cell death in a concentration 
dependent way [26,55,56&58] and in this instance there is little scope for a proton 
sponge-like effect to disrupt membrane.  

As it has been widely reported that an excess of positive charge is necessary for 
transfection activity, there is a balancing act to be performed between membrane 
disruption resulting in toxicity and membrane disruption resulting in transfection. This 
conundrum was explored further by creating A-B block co-polymers containing 
positively charged blocks interspersed with neutrally charged blocks (consisting of 
poly(ethylene glycol) (PEG)). The results of these explorations have been very well 
reviewed recently [22] and in brief, the greater the proportion of PEG, the less toxicity 
was observed by the lowered the transfection activity. Conversely, when the 
proportion of PEG was decreased, the toxicity increased, as did the transfection 
activity [22]. Beyond this there is also the issue of PK-PD, which is also influenced by 
change density, with positively charged material being sequestered to the liver very 
rapidly, or in the instance of charged particulates such as IPEC, accumulating in the 
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lungs or spleen [56,57&59]. This makes accessing other tissue difficult limiting the 
range of conditions that can be treated using this technology. 

 

 

2.0 Evolved solutions to cytosolic access, circumventing the PEG dilemma.  

Many different types of toxin have evolved to exploit membrane-recycling events to 
evade destruction in the endolysosome and to access the nucleocytosolic 
compartment where the target for the toxin resides. It is often possible to physically 
(using recombinant technology), separate the toxin “warhead” from its “rocket motor” 
or proteinatious intracellular delivery system [23,60-63]. For several years it has been 
postulated that it may be possible to use the rocket motor protein architecture 
necessary to access the nucleocytosolic compartment for drug delivery, once the 
toxin’s warhead has been removed [23,60-63]. Below, some of the well-characterised 
protein toxins documented to access the cytosol are discussed in relation to their 
potential to deliver nucleic acids. 

Protein toxins have evolved to exploit several different mechanisms to access a 
variety of topologically discrete compartments. Some of the better-known pathways 
are shown (Figure 1), which documents the intracellular trafficking of RT [25], anthrax 
toxin (Atx) [64], shiga toxin (ST) [65], cholera toxin (CT) [66] and diphtheria toxin (DT) 
[67]. These toxins are further detailed with regard to their receptor affinity (Table 2). 

 

2.1 Accessing the cytosol via the endoplasmic reticulum (ER).  

RT is a heterodimer, initially synthesised as a single, inactive, 576 amino acid chain 
by the castor bean (Ricinus communis). The single prepro-RT amino acid chain is 
subject to proteolytic processing and glycosylation in the castor bean ER and Golgi 
[68]. Mature (lethal) RT consists of a 267 residue RTAC and a 262 residue RTBC, 
held together by a disulphide bond between Cys294 (on RTAC) and Cys318 (on RTBC) 
[69]. RTAC attenuation is facile and has been undertaken to produce a potential anti-
RT vaccine [70]. 

RT cellular internalisation is driven by an association between RTBC and numerous 
receptors containing terminal N-acetylgalactosamine or beta-1,4-linked galactose 
(Table 2) [71]. This association can result in the binding of 106-108 RT molecules per 
cell [71], a number significantly higher vis-a-vis the distribution of the 
asialoglycoprotein receptor [50]. Given the abundance of RT receptors, it is not 
surprising that RT is internalised via several coat proteins including clathrin, caveolin 
and actin resulting in RT translocation to the Golgi via both recycling (Rab11 positive) 
and sorting endosomes (Rab5, EEA1 positive). This retrograde transport step results 
in the translocation of approximately 5-10% of the internalised RT to the Golgi 
apparatus [27]. A second retrograde transport event results in the translocation of RT 
from the Golgi apparatus to the ER, where RTAC is reductively “cleaved” from RTBC, 
prior to its retro-translocation, possibly utilising the Sec61p translocon, into the 
cytosol [72]. RTAC hydrolyses the N-glycosidic bond attaching the adenine residue 
at position 4324 to the 28S rRNA within the sarcin-ricin loop, inhibiting protein 
synthesis [73].  

Similar to RT, Pseudomonas exotoxin A (PEA) [74], CT [66], ST [65] and pertussis 
toxin (PT) [75] as well as several type I RIPs, that is RIPs with no cell binding domain 
i.e. pokeweed antiviral protein (PAP) [76] or Gelonin (Gel) [26], also have cytosolic 
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targets. CT, PEA, ST and PT have all been reported to translocate via the Golgi and 
ER en route to the cytosol, utilising a variety of retrograde transport strategies. It is 
less clear how the type I RIPs achieve cytosolic translocation, though there are 
reports of the C-terminus of PAP being necessary for cytosolic translocation and 
toxicity [76], when studied using a yeast expression system [76]. Here, the propensity 
of various PAP truncations and point mutation were examined in relation to PAP’s 
ability to navigate ER exit and depurinate ribosomes [76]. What is not clear is how a 
type I RIP exits the endocytic system that by default would deliver the protein to the 
endolysosome and destruction. It is possible that leaky vesicle fusion [31] is also 
responsible for the cytosolic translocation of the type I RIPs. If this is the case then, 
as mentioned earlier, the reduced toxicity of the type I RIPs (or RTAC without RTBC)  
[25] relative to the type II RIPs, may shed light on the benefits of utilising a cytosolic 
delivery system for membrane impervious therapeutics with cytosolic targets such as 
ASO or RNAi agents. CT, PEA, ST and PT receptors are summarised (Table 2). 

 

2.2 Accessing the cytosol from the endosome. 

Diphtheria toxin (DT) is a virulence factor produced by Corynebacterium diphtheriae 
and is synthesised as a single polypeptide precursor of 535 amino acids [77]. The 
precursor molecule is cleaved into an A and a B subunit, linked by two internal 
disulfide bonds (Cys186 interacting with Cys201 and Cys461 with Cys471). The DT B 
subunit consists of a trans-membrane (T) domain and a receptor-binding (R) domain. 
The DT A subunit contains the catalytic (C) domain responsible for inducing cell 
death [77]. The association of the R domain with the heparin-binding epidermal 
growth factor precursor (HB-EGF) receptor [77] facilitates the endocytic capture of 
DT (Table 2). The nucleation of multiple T domains in response to the acidification of 
the endosome [77], drives their insertion into the vesicle limiting membrane, and 
forms a pore through which the C-domain of the DT A chain may translocate (to the 
cytoplasm) inhibiting protein synthesis by deactivating elongation factor (EF)-2 [77].  

DT has been modified for use as a cytotoxic therapeutic by mutating its R domain, 
enhancing its specificity for the epidermal growth factor receptor (EGFR) [78] or, in 
the instance of Denileukin diftitox (Ontak®) (Eisai Medical Research Inc.) [79], an 
interleukin 2 receptor binding DT mutant, used in the management and treatment of 
cutaneous T-cell lymphoma (licensed by the FDA in 1999) [79]. Resimmune (A-
dmDT390-bisFv(UCHT1)) (Angimmune, LLC) is an experimental anti-T cell 
immunotoxin containing elements of DT, which has binding specificity for CD3 [80]. 

Clostridium tetani toxin (TeNT) and C. botulinum toxin (BoNT) are responsible for 
tetanus and botulism (respectively) [81]. BoNT has seven distinct serotypes (A, B, C1, 
C2, D, E, F, G), which have protease activity targeting the pre-synaptic neuroreceptor 
soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor 
(SNARE) complex responsible for neutortransmitter (acetylcholine) release [81,82]. 
This SNARE complex consists of SNARE domains contributed by SNAP25 
(hydrolysed by serotypes E, C, A), Synaptobrevin or vesicle-associated membrane 
protein (VAMP) (hydrolysed by serotypes G,B,D,F) and Syntaxin 1 (hydrolysed by 
serotype C) proteins [81]. Cleavage of these target molecules prevents 
neurotransmitter release. The toxin is synthesised as a 150 KDa molecule, which like 
RT is subject to proteolytic cleavage to produce a 100 KDa heavy chain and a 50 
KDa light chain, responsible for proteolytic activity. After receptor binding, a 
membrane translocation event from the endosome to the cytosol occurs which, 
similar to DT, requires the multimerisation and membrane insertion of the heavy 
chain, followed by the unfolding and translocation of the light chain [81]. C. botulinum 
toxin serotypes A and B are used clinically, with botulinum toxin A being marketed as 
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Botox (Allergan), Dysport (Ipsen), Xeomin (Merz Pharma) whilst serotype B is 
marketed as Myobloc (Solstice Neuroscience) [83]. 

 

 

2.3 Accessing the cytosol via multivesicular bodies (MVBs).  

Atx is a virulence factor of Bacillus anthracis, and may be considered an AB toxin, 
containing three protein chains [84]. The first of these, the protective antigen (PA) 
chain, may be thought of as a B chain, facilitating both cellular uptake and the 
cytosolic delivery of the A chains (oedema factor (EF) and Lethal Factor (LF)) [84]. In 
the wild PA83 is subject to serum or cell surface proteolytic cleavage by a furin-like 
protease at an RKKR motif (residues 164-167) to release PA63, which forms both 
homo-octamers and homo-heptamers [85, 86]. The low incidence octameric form 
displays: (i) enhanced translocase activity (ii) longer serum stability and (iii) 
decreased aggregation and inactivation relative to the heptamer [86]. Further, 
mutants have been documented that exclusively force PA octameric assembly, 
making this phenomenon accessible and highly reproducible (i.e. PA83 K245G, R252N 
and D512K or PA83 K245N, R252S and D512K) [87]. It is not known if the octameric 
mutants adopt (1) an identical conformation to those previously described [85, 87] 
and (2) display enhanced serum stability relative to the more physiological octamers, 
though their translocase activity has been documented both in vitro and in vivo [85, 
87]. The PA63(7/8) complex interacts with cellular receptors including; capillary 
morphogenesis protein 2 (CMG2) [88], integrin beta-1 (ITGB1) [89] and tumour 
endothelial marker 8 (TEM8) [90] at the cell surface (Table 2). TEM8 and CMG2 are 
almost ubiquitously expressed throughout the body, and drive the capture, tissue 
distribution and internalisation of PA [91]. After endocytic internalisation, the 
oligomeric, receptor bound, PA pre-pore undergoes a pH driven conformational 
transition, resulting in the membrane insertion of the 2β2-2β3 loops from each PA 
molecule. In the instance of heptameric PA assemblies, these loops combine to form 
a 14-stranded trans-membrane β-barrel, [92] across which, LF and EF may 
translocate. LF::PA oligomer association is via the flexible PA Phe-clamp loop [93] 
located on the interior of the pre-pore and pore, distal to the cell membrane. Within a 
multivesicular body (MVB) PA is sorted onto an intraluminal vesicle (ILV) (figure 1) 
[64] allowing the translocation of material from the lumen of the MVB into the lumen 
of an ILV. This translocation event is driven by the pH gradient across the endosomal 
membranes and requires the unfolding on LF [94]. As the lumen of the ILV is 
topologically equivalent to the cytosol, an internal vesicle recycling “back-fusion” 
event has been documented to be responsible for the cytosolic release of LF and EF 
[64]. Once back-fusion has occurred, the contents of the MVB are digested within the 
endolysosome (figure 1). Uptake of PA has been found to be almost ubiquitous [95 & 
96] with PA demonstrating a plasma t½ of 53 min following injection of 100µg i.v. into 
BALB/CJ mice [95], further the attenuation of both EF and LF is facile, removing 
domains II-IV leaving LFn and EFn respectively [97]. 

 

2.4 Attenuated toxins as nucleic acid delivery systems.  

A variety of toxins have been explored as agents that may enhance the delivery of 
nucleic acids, and a number of different strategies have been adopted. In most cases 
a polycation has been conjugated to either an attenuated version of the toxin or to 
the toxin B chain. Occasionally a polycation like PLL is used to condense plasmid 
DNA that has already associated to the toxin system. DT [98 & 99], AT [100], PEA, 
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[101&102], and CT [103 & 104], have all been used in this way. All of these systems 
were designed to deliver therapeutic genes, in the form of plasmids, rather than 
synthetic oligonucleotides and as a consequence required a way to prevent the 
degradation of labile plasmids in biological fluids. However this would also have 
several other effects including the formation of IPECs which may be up to 120nm in 
diameter [38], and too large to pass through toxin pores, like PA [93] or the Sec61p 
translocon [105]. In addition, the surface charge of the IPEC may also impact upon 
pore translocation [106] as well as the thermodynamic stability of the complex, as 
several different A chains need to unfold in order to pass through their relevant pore 
to perform membrane translocation [94] (i.e. the PA pore or the Sec61p translocon).  
The heteromeric PA protein assembly is shown (Figure 2). In addition to the above, it 
is also known that an excess of positive charge may also radically alter the PK-PD of 
a molecule [59], increase its toxicity and impart a membrane destabilsing effect 
required for transfection [22] (see section 1.4). Consequently, it is difficult to discern 
from the above experiments (i.e. [98-104]) how much transfection was due to the 
polycation and how much was due to the toxin and further, how much was due to a 
synergistic effect resulting from the effects of both toxin pore formation and 
membrane interaction, and polycation membrane interaction. A similar problem 
exists with the experiments utilising TeNT heavy chain chemically conjugated to PLL 
to mediate gene delivery [107]. A separate study expressing fragment of TeNT within 
muscle cells avoided the use of polycations but concluded that the inclusion of the 
TeNT fragment encoded by a plasmid injected into muscle mass did not have any 
influence on the expression of the transfected gene [108].  

If the deliverable (in this instance a protein nucleic acid (PNA)) was derivative with 
lysine then it was shown that PA protein could be used as a delivery system [109], 
though what is not clear from this study is how the PNA would associate with the PA. 
Further, as it is known that PA may stress membranes [110], it is also possible that 
the 8 lysine residues attached to the PNA were serving to further stress the 
membrane (to the point of rupture) rather than facilitating the entry of the PNA into 
the PA pore.  

Two studies stand out from this group in that they have not utilised polycations to 
augment toxin-mediated delivery of nucleic acids. The first used ST-like Vero toxin, 
fused to a DNA binding domain without polycations and reported the delivery plasmid 
DNA to the nucleus, monitored via the tracking of fluorescent DNA labelled with 
Oregon Green [111]. Another study, from the author’s laboratory, negated the use of 
polycations (with anthrax toxin) by using either antisense or siRNA as the deliverable 
[23]. Here the problem of nuclease resistance was overcome via chemical 
modification of the oligonucleotide and it was shown that despite the minimum 
diameter of the PA pore being 6Å [93] and the size of the LFn::ASO construct ASO 
having a radius of gyration of about 25Å, [23] delivery was achieved in vitro at high 
efficiency (equivalent to nucleofection) with no measurable toxicity [23]. The PA pore 
and the conjugation strategy binding the LFn to either the siRNA or ASO are shown 
(Figure 2). These data may indicate that the PA pore is more dynamic than has been 
previously imagined. 
 
 

3.0 Conclusion.  

The PEG dilemma has been and remains a considerable rate limit when considering 
the non-viral delivery of nucleic acids. When non-viral gene replacement therapy is 
considered using toxin fragments to guide a replacement gene either to a subset of 
cells or to guide the DNA through the endomembrane system, polycations have been 
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used to protect DNA from nuclease attach. This means that many of the limits 
associated with the PEG dilemma remain. As siRNA and antisense oligonucleotides 
can be chemically modified to enhance their resistance to nuclease attack, toxin 
fragments have been successfully deployed to enhance transfection efficiency 
without impacting upon toxicity. If this can be shown to be applicable to the in vivo 
delivery of these therapeutic agents we may be one step closer to moving antisense 
and siRNA medicines into becoming mainstream therapeutic modalities. 

 

4.0 Expert opinion.  

What potential does this research hold and what are the goals? The potential 
value, both humanitarian and commercial, associated with being able to safely and 
efficiently modulate gene expression is vast. This value is not limited to the clinical 
arena but is also apparent within the agricultural and veterinary fields, impacting 
upon sectors as diverse as drug development and food security. Of the may ways to 
modulate gene expression antisense is one of the simplest, requiring the delivery of 
an often-polar macromolecule to the cytosolic compartment (containing target 
mRNA) is antisense therapy. Given that only three antisense drugs have been 
licenced by the FDA since the first in 1998, it is evident that there are problems with 
this rationale.  

Key weaknesses with antisense therapeutics? Given that cells have evolved to 
exclude exogenous RNA and DNA (i.e. viroids, viruses etc.), it is not surprising that 
“naked” antisense drugs are not very effective as their intrinsic intracellular trafficking, 
assuming they can assimilate their target cells, is suboptimal. The cellular uptake of 
“naked” nucleic acids results in their endolysosomal accumulation and their 
subsequent enzymatic destruction. Consequently some sort of drug delivery system 
is required to 1) favourably modulate the PK-PD of antisense molecules (towards the 
intended target cell type) and 2) manipulate their subcellular targeting diverting them 
from the endolysosomal compartment to the cytosol and their target (mRNA). In the 
instance of antisense chemical modification can and has been used to stabilise these 
molecules in biological fluid, eliminating the need for enzymatic stabilisation from the 
delivery system. Whilst drug specificity is built into both antisense and siRNA 
sequence, target cell specificity is still desirable as it reduces the amount of drug 
needed to elicit the desirable therapeutic effect whilst reducing the possibility of 
unwanted side effects.  

What is needed to achieve the above goals? Many research groups have 
dedicated a lot of time to developing delivery systems and strategies for antisense, 
siRNA and gene replacement therapies. The use of polycations as nucleic acid 
delivery vehicles has been known for many years.  

What are the challenges? It has become apparent that it is difficult navigating; 
toxicity, intracellular targeting, stability, complement activation and PK-PD when 
using either cationic polymers or lipidic formulations for DNA delivery. The highly 
entropic nature of polymer-membrane interactions also makes defining specific 
mechanisms of activity responsible for the delivery of nucleic acids to the 
nucleocytosolic compartment difficult.  

Future research? The ability of many different protein toxins to access the cytosol 
has also been extensively studied and many of the specific molecular mechanisms 
responsible for their intracellular trafficking are well understood. As polycations 
mediated protection from nucleases for ASOs and siRNA can be countered with 
innovative changes to oligonucleotide chemistry, and the possibility of nucleic acid 
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pore transit has been demonstrated with a similar efficiency to nucleofection, the 
possibility of the cytosolic delivery of siRNA and antisense agents using attenuated 
protein toxins is now a reality. This is important as toxin delivery circumvents many of 
the problems associated with the PEG dilemma. What remains to be seen is if these 
systems can function safely and with high efficiency in vivo and eventually in the 
clinic. Whilst there will undoubtedly be further problems to overcome, such as cell 
targeting and protein immunogenicity, solutions may already exist, such as protein 
PEGylation, or as the Leppla group recently demonstrated, with drugs that can 
control the immune response to toxins [112], and further recombination strategies to 
facilitate cell type specific targeting.  
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Figure 1: (1) Receptor association mediates cell uptake. (2) Internalisation may be driven via 
a number of different coat proteins and is toxin dependent. (3) Receptor sorting within early 
endosomes (EE). (4) Cargo sorting and Anthrax PA prepore to pore transition is driven by the 
drop in luminal pH. This triggers a shift in PA conformation and pushes the pore into the lipid 
bilayer of the ILV. The drop in luminal pH is also thought to drive the translocation of cargo 
into the ILV lumen. This is also the point of membrane insertion of the DT B subunit which 
allows the “C” domain of the A chain into the cytosol.  (5) ILV recycling or “back fusion” 
releases Anthrax LFn into the cytosol. (6) ILVs concentrate in multivesicular bodies (late 
endosomes) prior to lysosomal fusion are digested after (7) endolysosome formation. (8) RT 
can retro-translocate from either the recycling endosome or the sorting endosome to the 
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trans-Golgi. This event is followed by a subsequent retrograde sorting and translocation event 
resulting in RT being moved form the Golgi to the ER. (10) RTA and RTB chains disassociate 
as RTA unfolds and exits the ER via retrograde passage through the Sec61p translocon. CT 
and ST are also thought to access the cytosol from the ER though may use a different 
mechanism to exit the ER. Golgi to ER translocation is achieved by CT via an ER retrieval 
motif (KDEL) present upon the C-terminus of CT A chain. Figure adapted from [23, 60, 61, 62, 
64, 67-69, 74, 77-78] 

 

 

Figure 2. Shown are the components of the attenuated Atx delivery system used for siRNA 
and ASO delivery. Here Anthrax Lethal Factor has been truncated to leave (approximately) 
domain 1 (n-terminal amino acids 1-255) which was fused to either the Saccharomyces 
cerevisiae transcription factor GAL4 (to bind a specific sequence of double stranded DNA) or 
Homo sapien sapien protein kinase R (PKR) for binding double stranded RNA. ASOs were 
assembled in such a way to produce both a double stranded GAL4 binding sequence as well 
as a single stranded antisense sequence. These were assembled and introduced to 
recombinant PA83, which has been documented to form both homo-heptamers and homo-
octamers. These two elements were then allowed for a supramolecular assembly, which was 
introduced to cells in culture. Adapted from [23, 85-87]. 
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Table 1: Select examples of recent and on going clinical trials using siRNA as a therapeutic. 
Adapted from [18 and www.clinicaltrials.gov. (using “siRNA” as a search term)] 
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Table 2: Select protein toxins and their cellular receptors. Adapted from [61, 69, 74]. 
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Figure 1: (1) Receptor association mediates cell uptake. (2) Internalisation may be driven via a number of 
different coat proteins and is toxin dependent. (3) Receptor sorting within early endosomes (EE). (4) Cargo 
sorting and Anthrax PA prepore to pore transition is driven by the drop in luminal pH. This triggers a shift in 
PA conformation and pushes the pore into the lipid bilayer of the ILV. The drop in luminal pH is also thought 
to drive the translocation of cargo into the ILV lumen. This is also the point of membrane insertion of the DT 
B subunit which allows the “C” domain of the A chain into the cytosol.  (5) ILV recycling or “back fusion” 
releases Anthrax LFn into the cytosol. (6) ILVs concentrate in multivesicular bodies (late endosomes) prior 
to lysosomal fusion are digested after (7) endolysosome formation. (8) RT can retro-translocate from either 

the recycling endosome or the sorting endosome to the trans-Golgi. This event is followed by a subsequent 
retrograde sorting and translocation event resulting in RT being moved form the Golgi to the ER. (10) RTA 
and RTB chains disassociate as RTA unfolds and exits the ER via retrograde passage through the Sec61p 
translocon. CT and ST are also thought to access the cytosol from the ER though may use a different 
mechanism to exit the ER. Golgi to ER translocation is achieved by CT via an ER retrieval motif (KDEL) 
present upon the C-terminus of CT A chain. Figure adapted from [23, 60, 61, 62, 64, 67-69, 74, 77-78]  
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Figure 2. Shown are the components of the attenuated Atx delivery system used for siRNA and ASO 
delivery. Here Anthrax Lethal Factor has been truncated to leave (approximately) domain 1 (n-terminal 
amino acids 1-255) which was fused to either the Saccharomyces cerevisiae transcription factor GAL4 (to 

bind a specific sequence of double stranded DNA) or Homo sapien sapien protein kinase R (PKR) for binding 
double stranded RNA. ASOs were assembled in such a way to produce both a double stranded GAL4 binding 

sequence as well as a single stranded antisense sequence. These were assembled and introduced to 
recombinant PA83, which has been documented to form both homo-heptamers and homo-octamers. These 
two elements were then allowed for a supramolecular assembly, which was introduced to cells in culture. 

Adapted from [23, 85-87].  
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Table 1: Select examples of recent and on going clinical trials using siRNA as a therapeutic. Adapted from 
[18 and www.clinicaltrials.gov. (using “siRNA” as a search term)]  
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Table 2: Select protein toxins and their cellular receptors. Adapted from [61, 69, 74].  
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