6,491 research outputs found

    Nonlinear Aharonov-Bohm scattering by optical vortices

    Full text link
    We study linear and nonlinear wave scattering by an optical vortex in a self-defocusing nonlinear Kerr medium. In the linear case, we find a splitting of a plane-wave front at the vortex proportional to its circulation, similar to what occurs in the scattered wave of electrons for the Aharonov-Bohm effect. For larger wave amplitudes, we study analytically and numerically the scattering of a dark-soliton stripe (a nonlinear analog of a small-amplitude wavepacket) by a vortex and observe a significant asymmetry of the scattered wave. Subsequently, a wavefront splitting of the scattered wave develops into transverse modulational instability, ``unzipping'' the stripe into trains of vortices with opposite charges.Comment: 4 pages, 4 figure

    Geometric phase around exceptional points

    Get PDF
    A wave function picks up, in addition to the dynamic phase, the geometric (Berry) phase when traversing adiabatically a closed cycle in parameter space. We develop a general multidimensional theory of the geometric phase for (double) cycles around exceptional degeneracies in non-Hermitian Hamiltonians. We show that the geometric phase is exactly π\pi for symmetric complex Hamiltonians of arbitrary dimension and for nonsymmetric non-Hermitian Hamiltonians of dimension 2. For nonsymmetric non-Hermitian Hamiltonians of higher dimension, the geometric phase tends to π\pi for small cycles and changes as the cycle size and shape are varied. We find explicitly the leading asymptotic term of this dependence, and describe it in terms of interaction of different energy levels.Comment: 4 pages, 1 figure, with revisions in the introduction and conclusio

    Distribution of nearest distances between nodal points for the Berry function in two dimensions

    Full text link
    According to Berry a wave-chaotic state may be viewed as a superposition of monochromatic plane waves with random phases and amplitudes. Here we consider the distribution of nodal points associated with this state. Using the property that both the real and imaginary parts of the wave function are random Gaussian fields we analyze the correlation function and densities of the nodal points. Using two approaches (the Poisson and Bernoulli) we derive the distribution of nearest neighbor separations. Furthermore the distribution functions for nodal points with specific chirality are found. Comparison is made with results from from numerical calculations for the Berry wave function.Comment: 11 pages, 7 figure

    Field Theory Approach to Quantum Interference in Chaotic Systems

    Full text link
    We consider the spectral correlations of clean globally hyperbolic (chaotic) quantum systems. Field theoretical methods are applied to compute quantum corrections to the leading (`diagonal') contribution to the spectral form factor. Far-reaching structural parallels, as well as a number of differences, to recent semiclassical approaches to the problem are discussed.Comment: 18 pages, 4 figures, revised version, accepted for publication in J. Phys A (Math. Gen.

    Periodic-orbit theory of universal level correlations in quantum chaos

    Full text link
    Using Gutzwiller's semiclassical periodic-orbit theory we demonstrate universal behaviour of the two-point correlator of the density of levels for quantum systems whose classical limit is fully chaotic. We go beyond previous work in establishing the full correlator such that its Fourier transform, the spectral form factor, is determined for all times, below and above the Heisenberg time. We cover dynamics with and without time reversal invariance (from the orthogonal and unitary symmetry classes). A key step in our reasoning is to sum the periodic-orbit expansion in terms of a matrix integral, like the one known from the sigma model of random-matrix theory.Comment: 44 pages, 11 figures, changed title; final version published in New J. Phys. + additional appendices B-F not included in the journal versio

    Tri-critical behavior in rupture induced by disorder

    Full text link
    We discover a qualitatively new behavior for systems where the load transfer has limiting stress amplification as in real fiber composites. We find that the disorder is a relevant field leading to tri--criticality, separating a first-order regime where rupture occurs without significant precursors from a second-order regime where the macroscopic elastic coefficient exhibit power law behavior. Our results are based on analytical analysis of fiber bundle models and numerical simulations of a two-dimensional tensorial spring-block system in which stick-slip motion and fracture compete.Comment: Revtex, 10 pages, 4 figures available upon reques

    The Single-Particle density of States, Bound States, Phase-Shift Flip, and a Resonance in the Presence of an Aharonov-Bohm Potential

    Full text link
    Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed. The single-particle density of states (DOS) for different self-adjoint extensions is calculated. The DOS provides a link between different physical quantities and is a natural starting point for their calculation. The consequences of an asymmetry of the S matrix for the generic self-adjoint extension are examined. I. Introduction II. Impenetrable flux tube and the density of states III. Penetrable flux tube and self-adjoint extensions IV. The S matrix and scattering cross sections V. The Krein-Friedel formula and the resonance VI. Regularization VII. The R --> 0 limit and the interpretation of self-adjoint extensions VIII. Energy calculations IX. The Hall effect in the dilute vortex limit X. Persistent current of free electrons in the plane pierced by a flux tube XI. The 2nd virial coefficient of nonrelativistic interacting anyons XII. Discussion of the results and open questionsComment: 68 pages, plain latex, 7 figures, 3 references and one figure added plus a few minor text correction

    Complex magnetic monopoles, geometric phases and quantum evolution in vicinity of diabolic and exceptional points

    Full text link
    We consider the geometric phase and quantum tunneling in vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopole. In weak-coupling limit the leading contribution to the real part of geometric phase is given by the flux of the Dirac monopole plus quadrupole term, and the expansion for its imaginary part starts with the dipolelike field. For a two-level system governed by the generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic complex geometric phase by integral over the complex Bloch sphere. We apply our results to to study a two-level dissipative system driven by periodic electromagnetic field and show that in the vicinity of the exceptional point the complex geometric phase behaves as step-like function. Studying tunneling process near and at exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by the Rabi oscillations and one-sheeted hyperbolic monopole emerges in this region of the parameters. In turn with the incoherent regime the two-sheeted hyperbolic monopole is associated. The exceptional point is the critical point of the system where the topological transition occurs and both of the regimes yield the quadratic dependence on time. We show that the dissipation brings into existence of pulses in the complex geometric phase and the pulses are disappeared when dissipation dies out. Such a strong coupling effect of the environment is beyond of the conventional adiabatic treatment of the Berry phase.Comment: 29 pages, 21 figure

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore