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A wave function picks up, in addition to the dynamic phase, the geometric �Berry� phase when traversing

adiabatically a closed cycle in parameter space. We develop a general multidimensional theory of the geometric

phase for �double� cycles around exceptional degeneracies in non-Hermitian Hamiltonians. We show that the

geometric phase is exactly � for symmetric complex Hamiltonians of arbitrary dimension and for nonsym-

metric non-Hermitian Hamiltonians of dimension 2. For nonsymmetric non-Hermitian Hamiltonians of higher

dimension, the geometric phase tends to � for small cycles and changes as the cycle size and shape are varied.

We find explicitly the leading asymptotic term of this dependence, and describe it in terms of interaction of

different energy levels.

DOI: 10.1103/PhysRevA.72.014104 PACS number�s�: 03.65.Vf

Non-Hermitian dissipative terms enter a quantum system
Hamiltonian when studying nonisolated systems, e.g., effec-
tive Hamiltonians describing decay of unstable states. It
turned out that the non-Hermitian physics differs dramati-
cally from the Hermitian physics in the presence of degen-
eracies �energy level crossings�, even if the non-Hermitian
system is close to the Hermitian one �1,2�. The most impor-
tant degeneracy intrinsic to non-Hermitian Hamiltonians is
the exceptional point �EP�, at which two eigenvalues and
corresponding eigenvectors coalesce, as opposed to the dia-
bolic point �DP� degeneracy of Hermitian operators, at which
the eigenvalues coalesce while the eigenvectors remain dif-
ferent. EP degeneracies have been observed in laser induced
ionization of atoms �3�, microwave cavities �4,5�, and in
“crystals of light” �6�. Similar phenomena �where the Hamil-
tonian is substituted by a different system operator� are en-
countered in optics of absorptive media �7�, acoustics �8�,
electronic circuits �9�, and mechanical systems �10,11�.

A wave function of a quantum system, whose parameters
undergo adiabatic cyclic evolution, acquires a complex factor
dependent only on the loop in parameter space and, thus,
called geometric or Berry phase �12�. Geometric phases in
non-Hermitian systems were studied in �2,7,13–19�. In such
systems, it is important whether or not EP is inside the closed
path. For Hamiltonians given by specific 2�2 matrices, the
geometric phase for a �double� cycle around EP was found to
be exactly �. Later this result was verified experimentally in
�5�. So far, EPs have been observed in decaying systems
described by symmetric effective Hamiltonians. This is the
case when the corresponding isolated system is time reversal
�described by a real symmetric Hamiltonian�. Time-irreversal
interactions, e.g., with external magnetic field, break the
symmetry of the effective Hamiltonian.

We should note that the existing theoretical studies for the
geometric phase around EPs rely on the possibility of reduc-
ing the system to the two-dimensional form. However, one

should be aware that the geometric phase is generally not
preserved under such a reduction, as this reduction is given
by a parameter dependent change of basis. For example, we
mention the change of geometric phase under the parameter-
dependent magnetic gauge transformation �14�.

In this paper, we develop a general multidimensional
theory for geometric phases around EPs. We show that, for
symmetric complex Hamiltonians of arbitrary dimension and
for general non-Hermitian Hamiltonians of dimension 2, the
geometric phase is exactly �. However, for nonsymmetric
non-Hermitian Hamiltonians of a higher dimension, the geo-
metric phase generally diverges from � as the cycle size
increases. We explicitly find the leading term of this diver-
gence. It describes the background influence of energy levels
not involved in the EP degeneracy. We note that the diver-
gence from � is related to irreversible Hermitian terms,
rather than to non-Hermitian dissipative terms.

Let H�X� be a non-Hermitian complex Hamiltonian

smoothly dependent on a vector of m real parameters X

= �X1 ,… ,Xm�. For simplicity, we consider Hamiltonians rep-

resented by non-Hermitian complex matrices of arbitrary di-
mension, but the results are valid in infinite dimensional case
as well. Let En�X� be the eigenvalues of H�X� �labeled n�,
and ��n�X�� be the corresponding eigenvectors. In multipa-

rameter space, a set of EPs defines a smooth surface of codi-
mension 2 �20�. For clarity, we assume that the number of
parameters is three �then EPs form a curve�, keeping in mind
that the results below are valid for any number of param-
eters. Consider the EP curve, corresponding to the coinci-
dence of the levels En=En+1 and the eigenvectors ��n�X��
= ��n+1�X��. Let C= �X�t� :0� t�T� be a cycle making one

turn around this EP curve in parameter space, see Fig. 1. We
assume that there are no degeneracies �multiple eigenvalues�
at points of the cycle C, as well as there are no other EP
curves inside C. We note that EP is the only generic codi-
mension 2 degeneracy for complex non-Hermitian Hamilto-
nians smoothly dependent on parameters �20�. Thus, strictly
speaking, EP is the only degeneracy that can be encircled by
C in generic systems.

Let ��n�0��= ��n�X�0��� and ��n+1�0��= ��n+1�X�0��� be

the interacting quantum states at t=0. After traversing the
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cycle C once, the states interchange �up to the phase multi-
plier� �17�. When making two turns, both states return to
their initial values picking up, in addition to the usual dy-

namical phase �n=−
1

�	0
2TEn�t�dt, a geometric phase �n �12�:

��n,n+1�2T��=ei��n+�n���n,n+1�0��. Note that, due to the inter-

changing of the states, we have �n=�n+1 and �n=�n+1. For
non-Hermitian systems, the geometric phase is given by the
integral �13,14�

�n = �n+1 = i

2C

��̃n�X��d�n�X��

��̃n�X���n�X��
, �1�

where ��̃n�X�� is the left eigenvector corresponding to En�X�.
The integral in Eq. �1� is evaluated over the cycle C tra-
versed twice in the increasing time direction �we denote this
by 2C�. The right and left eigenvectors are orthogonal at EP
�21�, which means that the denominator of the integral ex-
pression in Eq. �1� is zero at EP.

First, consider complex symmetric Hamiltonians: H�X�
=HT�X�. In this case, the left and right eigenvectors are com-

plex conjugate: ��̃n,n+1�X��= ��n,n+1�X��. By using this prop-

erty, we write Eq. �1� in the form

�n = i

2C

��n�X��d�n�X��

��n�X���n�X��
=

i

2



2C

d ln��n�X���n�X�� . �2�

The phase �n is equal to the change of the complex quantity
ln��n�X���n�X� over the double cycle 2C. This change de-

pends only on the number of turns made by the complex
number ��n�X� ��n�X�� around zero in complex plane, where

zero is a branch point of the complex logarithm function. In
one turn around zero, the logarithm changes by ±2�i �22�.

Since the geometric phase �n does not depend on the form
and size of the cycle, we evaluate �n by considering small
cycles C around a point XEP of the EP curve. At XEP, two
eigenvalues of the Hamiltonian HEP=H�XEP� coalesce: EEP

=En�XEP�=En+1�XEP�. EEP has a single eigenvector �	0
EP�

= ��n�XEP��= ��n+1�XEP�� and an associated vector �	1
EP� deter-

mined by �10�

HEP�	0
EP� = EEP�	0

EP�, HEP�	1
EP� = EEP�	1

EP� + �	0
EP� . �3�

The left eigenvector �	̃0
EP�= ��̃n�XEP��= ��̃n+1�XEP�� and asso-

ciated vector �	̃1
EP� are determined by

�	̃0
EP�HEP = EEP�	̃0

EP�, �	̃1
EP�HEP = EEP�	̃1

EP� + �	̃0
EP� . �4�

Recall that �	̃0
EP�	0

EP�=0. Additionally, we impose the nor-

malization conditions

�	̃1
EP�	0

EP� = �	̃0
EP�	1

EP� = 1, �	̃1
EP�	1

EP� = 0. �5�

In the neighborhood of XEP, we have �23�

��n,n+1�X�� = �	0
EP� ± �
�	1

EP� + o��
X − XEP
� ,

��̃n,n+1�X�� = �	̃0
EP� ± �
�	̃1

EP� + o��
X − XEP
� , �6�

where 
 is the linear scalar function of parameters


�X� = �
j=1

m

�	̃0
EP��H/�X j�	0

EP��X j − X j
EP� , �7�

with the derivatives taken at XEP; the equation 
=0 gives the
tangent of the EP curve in parameter space �23�. By using

Eqs. �5� and �6�, and the property �	̃0,1
EP �= �	0,1

EP � for symmetric

matrices, we obtain

��n�X���n�X�� = 2�
 + o��
X − XEP
� . �8�

The complex number 
 makes one turn around zero in com-
plex plane for one cycle C in parameter space. Hence,
��n�X� ��n�X�� makes a single closed loop around zero in

complex plane for the double cycle 2C. As a result, the com-
plex logarithm function in �2� changes by ±2�i, and we ob-
tain �n= ±�. The sign depends on the direction of the cycle
in complex plane; it does not influence the final result, since
the phase is determined up to the additional term 2�k for any
integer k.

There is the geometric phase analogy between EPs of
complex symmetric Hamiltonians and DPs of real symmetric
Hamiltonians. For real symmetric Hamiltonians, just like for
complex symmetric Hamiltonians, the geometric phase is
“produced” only by the degeneracies: It is � if the degen-
eracy is encircled, and zero otherwise �14�. Such phases,
which do not depend on the shape �geometry� of the cycle,
are called topological �24�. The major difference between
complex and real cases is that the cycle should be traversed
twice for EP and once for DP. When a complex symmetric
perturbation is given to a real symmetric Hamiltonian, DP
splits into two EPs �25�. One can say that each EP takes
one-half of the geometric phase of DP �counted per single
cycle�.

Now, consider nonsymmetric non-Hermitian Hamilto-
nians. We study the local structure of the EP degeneracy by
means of the versal deformation theory of matrices �20,26�.
The eigenvectors ��n�X�� and ��n+1�X�� are nonsmooth func-

tions of parameters at XEP. However, together they define a
two-dimensional invariant linear subspace, which smoothly
depends on parameters. This invariant linear subspace can be
given by two vectors �	0�X�� and �	1�X�� smoothly depen-

dent on parameters: �	0,1�X�� are linear combinations of

��n�X�� and ��n+1�X�� and satisfy the equations �see �26��

H�X��	0�X�� = s�X��	0�X�� + p�X��	1�X�� ,

FIG. 1. Cycle around EP in parameter space.
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H�X��	1�X�� = s�X��	1�X�� + �	0�X�� . �9�

Here, s�X�= �En�X�+En+1�X�� /2 and p�X�= �En+1�X�
−En�X��2 /4 are smooth scalar functions. At X=XEP, where

s�XEP�=EEP and p�XEP�=0, �9� yield the Jordan chain Eq.

�3�. Hence, �	0�XEP��= �	0
EP� is the eigenvector and

�	1�XEP��= �	1
EP� is the associated vector of the double eigen-

value EEP. By means of Eq. �9�, the eigenvalues En,n+1�X�
and corresponding eigenvectors are found as

En,n+1�X� = s�X� ± �p�X� ,

��n,n+1�X�� = �	0�X�� ± �p�X��	1�X�� , �10�

where two Riemann sheets of the complex square root cor-
respond to En�X� and En+1�X�. We remark that the function


�X� in Eq. �7� is the linearization of p�X� at XEP. Similarly,

the vectors �	̃0,1�X�� are introduced for the left eigenspace:

They determine the left eigenvectors as

��̃n,n+1�X�� = �	̃0�X�� ± �p�X��	̃0�X�� , �11�

and satisfy the orthonormality conditions

�	̃0�X��	0�X�� = �	̃1�X��	1�X�� = 0,

�	̃1�X��	0�X�� = �	̃0�X��	1�X�� = 1. �12�

At EP, �	̃0
EP�= �	̃0�XEP�� is the left eigenvector and �	̃1

EP�
= �	̃1�XEP�� is the left associated vector.

By using Eqs. �10�–�12� in Eq. �1�, we obtain

�n =
i

2



2C

d ln�p�X�

+ i

2C

�	̃0�X��d	0�X�� + p�X��	̃1�X��d	1�X��

2�p�X�

+
i

2



2C

��	̃0�X��d	1�X�� + �	̃1�X��d	0�X��� . �13�

The double cycle 2C corresponds to a single cycle of the
square root �p�X� around zero in complex plane. Hence, the

first integral in Eq. �13� equals ±2�i, where the sign depends
on the direction of the cycle in complex plane. The second
integral in Eq. �13� vanishes, since the square root in the
denominator has opposite signs when traversing the first and
second cycles. Finally, the third integral is the same for the
first and second cycles. As a result, we have

�n = ± � + i

C

��	̃0�X��d	1�X�� + �	̃1�X��d	0�X��� .

�14�

Note that the integral in Eq. �14� is taken over one cycle C in
the increasing time direction.

First, consider Hamiltonians given by 2�2 general com-
plex matrices. According to Eq. �12�, the 2�2 matrix
�1��	̃1�X��+ �2��	̃0�X�� is the inverse of �	0�X���1�
+ �	1�X���2�, where �1�= �1,0� and �2�= �0,1� are the unit

vectors. Hence, components of the vectors �	̃0,1�X�� can be

expressed explicitly in terms of the components of �	0,1�X��.
By using these expressions, we transform the integral in Eq.
�14� to the form �Cd ln det��	0�X���1�+ �	1�X���2��; it van-

ishes since the 2�2 matrix �	0�X���1�+ �	1�X���2� is every-

where nonsingular by definition. Hence, for 2�2 general
non-Hermitian Hamiltonians, the geometric phase equals ±�
and does not depend on the loop shape, similar to the case of
symmetric complex Hamiltonians. This result justifies the
existence of topological indices describing the polarization
ellipses around C points in crystal optics �7�.

For multidimensional non-Hermitian Hamiltonians, the
integral in Eq. �14� is generally nonzero. Consider a cycle

C= �X�t�=XEP+�X̂�t� :0� t�T� making one turn around EP,

where � is a small positive parameter controlling size of the
cycle. Formulae for derivatives of �	0,1�X�� and �	̃0,1�X�� at

XEP are provided by the versal deformation method �26�. By
using these formulae in Eq. �14�, we obtain the asymptotic
expression

�n = ± � + ia�2 + O��3� , �15�

where the complex constant a is given by the integral

a = 

C

�2�	̃0
EP�H1�G−3 − �	1

EP��	̃1
EP��dH1�	0

EP�

+ �	̃0
EP�H1G−2dH1�	1

EP� + �	̃1
EP�H1G−2dH1�	0

EP�� .

�16�

Here H1�X̂�=� j=1
m ��H /�X j�X̂ j and dH1�X̂�=� j=1

m ��H /�X j�dX̂ j

with the partial derivatives taken at XEP, and G=HEP−EEPI

+ �	1
EP��	̃1

EP� is a nonsingular matrix �I is the identity opera-

tor�. The correction term ia�2 is determined by the informa-
tion about the system at EP �this includes eigenvectors, as-
sociated vectors, and first derivatives of the Hamiltonian

with respect to parameters� and by the cycle shape X̂�t�. De-

tails of the derivation of Eq. �16� will appear elsewhere �27�.
The physical meaning of the constant �16� can be under-

stood by using the eigenvector expansion of the unity and of
the Hamiltonian at EP:

I = �	0
EP��	̃1

EP� + �	1
EP��	̃0

EP� + �
k�n,n+1

��k
EP���̃k

EP� , �17�

HEP = �	0
EP��	̃0

EP� + EEP��	0
EP��	̃1

EP� + �	1
EP��	̃0

EP��

+ �
k�n,n+1

Ek
EP��k

EP���̃k
EP� , �18�

where Ek
EP=Ek�XEP�, ��k

EP�= ��k�XEP��, and ��̃k
EP�= ��̃k�XEP��.

Here we assume the normalization condition for the left and

right eigenvectors ��̃k
EP��k

EP�=1. Recall that ��̃k
EP�	0,1

EP �

= �	̃0,1
EP ��k

EP�=0 and ��̃
k�

EP��k
EP�=0 if k�k�. Expression �18�

represents the transformation of HEP to the canonical Jordan
form written in terms of eigenvectors and associated vectors
�21�. By substituting Eqs. �17� and �18� into the expression
for the matrix G, after a series of manipulations, we trans-
form Eq. �16� to
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a = �
k�n,n+1



C

�2
�	̃0

EP�H1��k
EP���̃k

EP�dH1�	0
EP�

�Ek
EP − EEP�3

+
�	̃1

EP�H1��k
EP���̃k

EP�dH1�	0
EP�

�Ek
EP − EEP�2

+
�	̃0

EP�H1��k
EP���̃k

EP�dH1�	1
EP�

�Ek
EP − EEP�2

� . �19�

The terms �	̃0,1
EP �H1��k

EP� and ��̃k
EP�dH1�	0,1

EP � describe the

interaction of the degenerate level EEP with the levels Ek, k

�n ,n+1 at the EP. Thus, the change of the geometric phase

with the cycle size and shape variation is due to the influence

of the energy levels not involved in the EP degeneracy. One

can see that, if the difference Ek
EP−EEP is big, the influence

of the level Ek is proportional to �Ek
EP−EEP�−2 and can be

neglected. However, if Ek
EP−EEP is small, the change of the

geometric phase due to the interaction with Ek grows propor-

tionally to �Ek
EP−EEP�−3 and may be big. In the extreme case

Ek
EP−EEP→0, i.e., near the triple degeneracy En=En+1=Ek,

we have a→
. Hence, triple degeneracies require special

investigation.

Thus, for nonsymmetric non-Hermitian Hamiltonians, the
deviation of the geometric phase from � is the multidimen-
sional phenomenon, which cannot be captured in two-
dimensional approximations. Asymptotic expression �15�
with the coefficient �16� for the correction term was con-
firmed by numerical simulations for particular Hamiltonians
of dimensions 3 and 4. This change of the geometric phase,
which is intrinsic to nonsymmetric non-Hermitian Hamilto-
nians, can be verified in future experiments. One of the prac-
tical ways is extending recent microwave cavity experiments
�5�, where EP degeneracies were studied for complex sym-
metric Hamiltonians. The symmetry of the Hamiltonian can
be broken by applying external magnetic field, as discussed
in �2�. In general, this effect should exist when studying the
decay of nearly degenerate resonant states for time-irreversal
systems.

Based on the expansions of eigenvectors near EP, we have
shown that in the general case the geometric phase integral
can be evaluated by methods of complex analysis. This can
be regarded as a response to Arnold �28� who suggested to
develop a theory of ”residues” to calculate the Berry phase.
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