20 research outputs found

    Prospective Relationship between Hemispheric Lateralisation and CD4+ T Cells in Human Immunodeficiency Virus Type 1

    Get PDF
    Objectives: Neuromodulation of the immune system has been proposed to be influenced by hemispheric lateralisation (HL). The present study tested whether HL predicted CD4+ levels, statistically controlling for confounders. Methods: Employing two assessments of HL, 68 human immunodeficiency virus (HIV)-1+ patients were followed prospectively. Numerous exclusion criteria and confounder assessments were employed (e.g. age/medication). Results: Left HL significantly positively predicted CD4+ levels at follow-up, and this was qualified by medication (HAART) status: only in HAART-naĂŻve patients did HL predict CD4 levels. Furthermore, HL significantly predicted whether patients had clinically significantly high/low CD4+ counts. Conclusions: Using a more rigorous methodology than a previous study, the present work partly corroborated the theory of HL influences on immunity, extended it to HIV immunity and identified a possible moderator: HAART medication. Implications for future research and treatments are provided

    A new method for tracking of motor skill learning through practical application of Fitts’ law

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund.A novel upper limb motor skill measure, task productivity rate (TPR) was developed integrating speed and spatial error, delivered by a practical motor skill rehabilitation task (MSRT). This prototype task involved placement of 5 short pegs horizontally on a spatially configured rail array. The stability of TPR was tested on 18 healthy right-handed adults (10 women, 8 men, median age 29 years) in a prospective single-session quantitative within-subjects study design. Manipulations of movement rate 10% faster and slower relative to normative states did not significantly affect TPR, F(1.387, 25.009) = 2.465, p = .121. A significant linear association between completion time and error was highest during the normative state condition (Pearson's r = .455, p < .05). Findings provided evidence that improvements in TPR over time reflected motor learning with possible changes in coregulation behavior underlying practice under different conditions. These findings extend Fitts’ law theory to tracking of practical motor skill using a dexterity task, which could have potential clinical applications in rehabilitation

    The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments

    Get PDF
    Background. Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique and has previously been shown to enhance submaximal exercise by reducing rating of perceived exertion (RPE). The present study examined the effects of tDCS on high-intensity self-paced exercise in temperate conditions and fixed followed by maximal exercise in the heat; it was hypothesised performance and RPE would be altered. Methods. Two separate studies were undertaken in which exercise was preceded by 20-minutes of sham tDCS (SHAM), or anodal tDCS (TDCS). Study 1: six males completed a 20-km cycling time trial, on two occasions. Power output (PO), RPE, O2 pulse, and heart rate (HR) were measured throughout. Study 2: eight males completed fixed intensity cycling exercise at 55% of a pre-determined maximal power output (PMax) for 25-minutes before undertaking a time to exhaustion test (TTE; 75% PMax) in hot conditions (33°C), on two occasions. Test duration, heart rate, thermal and perceptual responses were measured. Study specific and combined statistical analyses was undertaken and effect sizes established.. Results. Study 1: mean PO was not improved with the tDCS (197 ± 20 W) compared to SHAM (197 ± 12 W) and there were no differences in pacing profile HR, O2 pulse or RPE (p > .05). Study 2: TTE duration (SHAM 314 ± 334 s cf 237 ± 362 s tDCS), thermal, heart rate and perceptual responses were unchanged by tDCS compared to SHAM (p > .05). When combined, performance in the SHAM trial tended to better than the tDCS. Conclusion. tDCS did not influence cycling performance (study 1) exercise tolerance (study 2) or perception (studies 1&2). tDCS does not appear to facilitate high intensity exercise performance or exercise performance in the heat

    Effects of auditory stimuli on electrical activity in the brain during cycle ergometry

    Get PDF
    © 2017 The Authors. The present study sought to further understanding of the brain mechanisms that underlie the eïŹ€ects of music on perceptual, aïŹ€ective, and visceral responses during whole-body modes of exercise. Eighteen participants were administered light-to-moderate intensity bouts of cycle ergometer exercise. Each exercise bout was of 12-min duration (warm-up [3 min], exercise [6 min], and warm-down [3 min]). Portable techniques were used to monitor the electrical activity in the brain, heart, and muscle during the administration of three conditions: music, audiobook, and control. Conditions were randomized and counterbalanced to prevent any inïŹ‚uence of systematic order on the dependent variables. Oscillatory potentials at the Cz electrode site were used to further understanding of time–frequency changes inïŹ‚uenced by voluntary control of movements. Spectral coherence analysis between Cz and frontal, frontal-central, central, central-parietal, and parietal electrode sites was also calculated. Perceptual and aïŹ€ective measures were taken at ïŹve timepoints during the exercise bout. Results indicated that music reallocated participants' attentional focus toward auditory pathways and reduced perceived exertion. The music also inhibited alpha resynchronization at the Cz electrode site and reduced the spectral coherence values at Cz–C4 and Cz–Fz. The reduced focal awareness induced by music led to a more autonomous control of cycle movements performed at light-to-moderate-intensities. Processing of interoceptive sensory cues appears to upmodulate fatigue-related sensations, increase the connectivity in the frontal and central regions of the brain, and is associated with neural resynchronization to sustain the imposed exercise intensity.Coordination for the Improvement of Higher Education Personnel (CAPES)

    MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    No full text
    The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB) in the single pulse Interpolation Twitch Technique (ITT). 14 healthy participants (31±7 years) participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum) at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG) from the BB, the triceps brachii m. (TB) and the abductor pollicis brevis m. (APB) were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA) of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N) and magnetic (0.81 ± 0.49 N) stimulation (p > 0.05), and the maximum VA of BB was comparable between electrical (95%) and magnetic (93%) stimulation (p > 0. 05). No differences (p >0.05) were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms) and magnetic (12.61 ± 0.58 mV.ms) stimulation. The TB M-waves were also similar (p > 0.05) but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05). The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05). Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05). The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising new application of peripheral magnetic stimulation as an alternative to the conventional ITT for the assessment of BB voluntary activatio

    The effect of transcranial direct current stimulation (tDCS) on food craving, reward and appetite in a healthy population.

    Get PDF
    The ability to control hedonic appetite is associated with executive functioning, originating in the prefrontal cortex (PFC). These rewarding components of food can override homeostatic mechanisms, potentiating obesogenic behaviours. Indeed, those susceptible to overconsumption appear to have PFC hypo-activation. Transcranial direct current stimulation (tDCS) over the dorsolateral PFC (DLPFC) has been shown to reduce food craving and consumption, potentially via attenuating this reward response. We examined the effects of stimulation on food reward and craving using a healthy-weight cohort. This study is amongst the first to explore the effects of tDCS on explicit and implicit components of reward for different food categories. Twenty-one healthy-weight participants (24 ± 7 years, 22.8 ± 2.3 kg m-2) completed two sessions involving double-blind, randomised and counterbalanced anodal or sham tDCS over the right DLPFC, at 2 mA for 20 min. Food craving (Food Craving Questionnaire-State), reward (Leeds Food Preference Questionnaire), and subjective appetite (100 mm visual analogue scales) were measured pre- and post-tDCS. Eating behaviour trait susceptibility was assessed using the Three Factor Eating Questionnaire-Short Form, Control of Eating Questionnaire, and Food Craving Questionnaire-Trait-reduced. Stimulation did not alter food craving, reward or appetite in healthy-weight participants who displayed low susceptibility to overconsumption, with low trait craving, good craving control, and low uncontrolled eating and emotional eating behaviour. Implicit and explicit reward were reliable measures of hedonic appetite, suggesting these are robust targets for future tDCS research. These findings suggest that applying tDCS over the DLPFC does not change food reward response in individuals not at risk for overconsumption, and future work should focus on those at risk of overconsumption who may be more responsive to the effects of tDCS on hedonic appetite

    No effect of prefrontal transcranial direct current stimulation (tDCS) on food craving, food reward and subjective appetite in females displaying mild-to-moderate binge-type behaviour.

    No full text
    Previous work suggests there may be an effect of transcranial direct current stimulation (tDCS) on appetite control in people at risk of overconsumption, however findings are inconsistent. This study aimed to further understand the potential eating behaviour trait-dependent effect of tDCS, specifically in those with binge-type behaviour. Seventeen females (23 ± 7 years, 25.4 ± 3.8 kg·m−2) with mild-to-moderate binge eating behaviour completed two sessions of double-blind, randomised and counterbalanced anodal and sham tDCS applied over the right dorsolateral prefrontal cortex at 2.0 milliampere for 20 minutes. Subjective appetite visual analogue scales (VAS), the Food Craving Questionnaire-State (FCQ-S), and Leeds Food Preference Questionnaire (LFPQ) were completed pre- and post-tDCS. Participants then consumed a fixed-energy meal, followed by the VAS, FCQ-S and LFPQ. No difference between pre- and post-tDCS scores were found across fullness (p = 0.275, BF10 = 0.040), prospective consumption (p = 0.127, BF10 = 0.063), desire to eat (p = 0.247, BF10 = 0.054) or FCQ-S measures (p = 0.918, BF10 = 0.040) when comparing active and sham protocols. Only explicit liking and wanting for high-fat sweet foods were significantly different between conditions, with increased scores following active tDCS. When controlling for baseline hunger, the significant differences were removed (p = 0.138 to 0.161, BF10 = 0.810 to 1.074). The present data does not support the eating behaviour trait dependency of tDCS in a specific cohort of female participants with mild-to-moderate binge eating scores, and results align with those from individuals with healthy trait scores. This suggests participants with sub-clinical binge eating behaviour do not respond to tDCS. Future work should further explore effects in clinical and sub-clinical populations displaying susceptibility to overconsumption and weight gain

    Effective transcranial direct current stimulation (tDCS) parameters for the modulation of eating behavior:a systematic literature review and meta-analysis

    No full text
    Objective This study aimed to consider the effect of differing transcranial direct current stimulation (tDCS) parameters on eating-related measures and how issues with experimental design (e.g., inadequate blinding) or parameters variation may drive equivocal effects. Methods Literature searches were conducted across MEDLINE, PsycINFO, Scopus, and Science Direct. Studies using conventional sham-controlled tDCS to modify eating-related measures in adult human participants were included. A total of 1135 articles were identified and screened by two independent authors. Study quality was assessed using the Risk of Bias tool. Random-effects meta-analyses were performed, with subgroup analyses to determine differences between parameter sets. Results We identified 28 eligible studies; 7 showed low risk of bias, with the remaining studies showing bias arising from issues implementing or reporting blinding protocols. Large variation in applied parameters was found, including montage, current intensity and density, participant and researcher blinding, and the use of online or offline tasks. The application of differing parameters seemed to alter the effects of tDCS on eating-related measures, particularly for current density (g = −0.25 to 0.31), and when comparing single-session (g = −0.08 to 0.01) versus multisession protocols (g = −0.34 to −0.29). Some parameters result in null effects. Conclusions The absence of tDCS-mediated change in eating-related measures may be driven by variation in applied parameters. Consistent application of parameters that seem to be effective for modulating eating behavior is important for identifying the potential impact of tDCS. Using the findings of this review, we propose a series of parameters that researchers should apply in their work
    corecore