14 research outputs found

    Strangeness Production close to Threshold in Proton-Nucleus and Heavy-Ion Collisions

    Full text link
    We discuss strangeness production close to threshold in p+A and A+A collision. Comparing the body of available K+, K0, K-, and Lambda data with the IQMD transport code and for some key observables as well with the HSD transport code, we find good agreement for the large majority of the observables. The investigation of the reaction with help of these codes reveals the complicated interaction of the strange particles with hadronic matter which makes strangeness production in heavy-ion collisions very different from that in elementary interactions. We show how different strange particle observables can be used to study the different facets of this interaction (production, rescattering and potential interaction) which finally merge into a comprehensive understanding of these interactions. We identify those observables which allow for studying (almost) exclusively one of these processes to show how future high precision experiments can improve our quantitative understanding. Finally, we discuss how the K+ multiplicity can be used to study the hadronic equation of state.Comment: 134 pages, pdf 3.3MB, version to be published in Physics Report

    Study of Marine Sponges Graphitization during Heat Treatment up to 1200 °C

    No full text
    The results of studies of marine sponge carbonization processes during thermal treatment in an argon atmosphere in the temperature range from room temperature to 1200 °C are presented. The spatial structure, atomic composition of native and carbonized sponges, and their changes during pyrolysis were characterized using a set of methods that are informative at the macro- (thermogravimetric analysis, derivative thermogravimetric analysis, differential scanning calorimetry), micro- (Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy), and nanoscales (X-ray absorption and photoelectron spectroscopy using synchrotron radiation and a sample charge compensation system). Preservation of the 3D architecture at the macro- and microlevels and graphitization of the interfibril medium with the formation of turbostratic graphite at the nanolevel were demonstrated. It was shown that the atomic contents of nitrogen, carbon, and oxygen in the spongin were ~2–3 at.%, ~5 at.%, and ~4 at.%, respectively. The matter concentrated in the space between the spongin fibrils included ~70 at.% carbon and ~11 at.% oxygen, with a large proportion of carbon (~63 at.%) involved in the formation of aromatic and C–C bonds and the remainder in carbon monoxide compounds. After the decomposition of spongin at 400 °C, this substance transformed into turbostratic graphite, preserving the 3D architecture of the original marine sponge as the temperature rose

    The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C<sub>60</sub> Hot Isostatic Pressing

    No full text
    The fullerite C60 modified by hot isostatic pressing (HIP) at 0.1 GPa in argon near and beyond its thermal stability region (920–1270 K temperature interval) was studied by X-ray diffractometry, Raman spectroscopy, ultra soft X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy. It was found that the C60 molecules merge into closed nanocapsules with a graphene surface during the thermal treatment. The conducted studies showed that using HIP treatment of the fullerite C60, it is possible to obtain a chemically resistant material with a high hardness and elasticity, as well as a density lower than that of the graphite. This new material, consisting of closed graphene nanocapsules 2–5 nm in size, formed by sp2 covalent bonds between carbon atoms is promising for various applications, and as a basis for the synthesis of new composite materials

    The Formation of Nanoscale Closed Graphene Surfaces during Fullerite C60 Hot Isostatic Pressing

    No full text
    The fullerite C60 modified by hot isostatic pressing (HIP) at 0.1 GPa in argon near and beyond its thermal stability region (920&ndash;1270 K temperature interval) was studied by X-ray diffractometry, Raman spectroscopy, ultra soft X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy. It was found that the C60 molecules merge into closed nanocapsules with a graphene surface during the thermal treatment. The conducted studies showed that using HIP treatment of the fullerite C60, it is possible to obtain a chemically resistant material with a high hardness and elasticity, as well as a density lower than that of the graphite. This new material, consisting of closed graphene nanocapsules 2&ndash;5 nm in size, formed by sp2 covalent bonds between carbon atoms is promising for various applications, and as a basis for the synthesis of new composite materials

    Quantitative Characterization of Oxygen-Containing Groups on the Surface of Carbon Materials: XPS and NEXAFS Study

    No full text
    The results of the comparative quantitative study of oxygen-containing groups adsorbed on the surface of carbonized sponge scaffold (CSS), highly oriented pyrolytic graphite (HOPG), fullerite C60 and multi-walled carbon nanotubes (MWCNTs) introduced into a high vacuum from the atmosphere without any pre-treatment of the surface are discussed. The studied materials are first tested by XRD and Raman spectroscopy, and then quantitatively characterized by XPS and NEXAFS. The research results showed the presence of carbon oxides and water-dissociation products on the surfaces of materials. It was shown that main source of oxygen content (~2%) on the surface of HOPG, MWCNTs, and C60 powder is water condensed from the atmosphere in the form of an adsorbed water molecule and hydroxyl group. On the CSS surface, oxygen atoms are present in the forms of carbon oxides (4–5%) and adsorbed water molecules and hydroxyl groups (5–6%). The high content of adsorbed water on the CSS surface is due to the strong roughness and high porosity of the surface

    First report on chitinous holdfast in sponges (Porifera)

    No full text
    International audienceA holdfast is a root-or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan–Elson assay and Cal-cofluor White staining), we show that chitin from the sponge holdfast is much closer to a-chitin than to b-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously unde-scribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates

    Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges

    No full text
    International audienceFabrication of biomimetic materials and scaffolds is usually a micro- or even nanoscale process; however, most testing and all manufacturing require larger-scale synthesis of nanoscale features. Here, we propose the utilization of naturally prefabricated three-dimensional (3D) spongin scaffolds that preserve molecular detail across centimeter-scale samples. The fine-scale structure of this collagenous resource is stable at temperatures of up to 1200°C and can produce up to 4 × 10–cm–large 3D microfibrous and nanoporous turbostratic graphite. Our findings highlight the fact that this turbostratic graphite is exceptional at preserving the nanostructural features typical for triple-helix collagen. The resulting carbon sponge resembles the shape and unique microarchitecture of the original spongin scaffold. Copper electroplating of the obtained composite leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol in both freshwater and marine environments
    corecore