98 research outputs found

    Improving sepsis care in Africa: an opportunity for change?

    Get PDF
    Sepsis is common and represents a major public health burden with significant associated morbidity and mortality. However, despite substantial advances in sepsis recognition and management in well-resourced health systems, there remains a distinct lack of research into sepsis in Africa. The lack of evidence affects all levels of healthcare delivery from individual patient management to strategic planning at health-system level. This is particular pertinent as African countries experience some of the highest global burden of sepsis. The 2017 World Health Assembly resolution on sepsis and the creation of the Africa Sepsis Alliance provided an opportunity for change. However, progress so far has been frustratingly slow. The recurrent Ebola virus disease outbreaks and the COVID-19 pandemic on the African continent further reinforce the need for urgent healthcare system strengthening. We recommend that African countries develop national action plan for sepsis which should address the needs of all critically ill patients

    Improving sepsis care in Africa: an opportunity for change?

    Get PDF
    Sepsis is common and represents a major public health burden with significant associated morbidity and mortality. However, despite substantial advances in sepsis recognition and management in well-resourced health systems, there remains a distinct lack of research into sepsis in Africa. The lack of evidence affects all levels of healthcare delivery from individual patient management to strategic planning at health-system level. This is particular pertinent as African countries experience some of the highest global burden of sepsis. The 2017 World Health Assembly resolution on sepsis and the creation of the Africa Sepsis Alliance provided an opportunity for change. However, progress so far has been frustratingly slow. The recurrent Ebola virus disease outbreaks and the COVID-19 pandemic on the African continent further reinforce the need for urgent healthcare system strengthening. We recommend that African countries develop national action plans for sepsis which should address the needs of all critically ill patients

    A case report of COVID-19 monitoring in the Austrian professional football league

    Get PDF
    Since the beginning of the COVID -19 pandemic, many contact sport teams are facing major challenges to safely continue training and competition. We present the design and implementation of a structured monitoring concept for the Austrian national football league. 146 professional players from five clubs of the professional Austrian football league were monitored for a period of 12 weeks. Subjective health parameters, PCR- test results and data obtained from a geo-tracking app were collected. Simulations modelling the consequences of a COVID-19 case with increasing reproduction number were computed. No COVID -19 infection occurred during the observation period in the players. Infections in the nearer surroundings lead to increased perceived risk of infection. Geo tracking was particularly hindered due to technical problems and reluctance of users. Simulation models suggested a hypothetical shut-down of all training and competition activities. A structured monitoring concept can help to continue contact sports safely in times of a pandemic. Cooperation of all involved is essential. Trial registration: ID: DRKS00022166 15/6/2020 https://www.who.int/ictrp/search/en/

    Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data.

    Get PDF
    BACKGROUND: Rapid identification and investigation of healthcare-associated infections (HCAIs) is important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19 infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral sequencing data provides additional information regarding potential transmission clusters, but the low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods difficult. METHODS: We developed a novel statistical method and sequence reporting tool (SRT) that combines epidemiological and sequence data in order to provide a rapid assessment of the probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission) and to identify infections that could plausibly constitute outbreak events. The method is designed for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and Sheffield collected February-May 2020. RESULTS: We analysed data from 326 HOCIs. Among HOCIs with time from admission ≥8 days, the SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with time from admission 3-7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82 (40.2%). CONCLUSIONS: The methodology developed can provide rapid feedback on HOCIs that could be useful for infection prevention and control teams, and warrants further prospective evaluation. The integration of epidemiological and sequence data is important given the low mutation rate of SARS-CoV-2 and its variable incubation period. FUNDING: COG-UK HOCI funded by COG-UK consortium, supported by funding from UK Research and Innovation, National Institute of Health Research and Wellcome Sanger Institute.COG-UK HOCI funded by COG-UK consortium, supported by funding from UK Research and Innovation, National Institute of Health Research and Wellcome Sanger Institute

    Optical feedback effects on terahertz quantum cascade lasers: modelling and applications

    Get PDF
    Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1–5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Laser Feedback Interferometry as a Tool for Analysis of Granular Materials at Terahertz Frequencies: Towards Imaging and Identification of Plastic Explosives

    Get PDF
    We propose a self-consistent method for the analysis of granular materials at terahertz (THz) frequencies using a quantum cascade laser. The method is designed for signals acquired from a laser feedback interferometer, and applied to non-contact reflection-mode sensing. Our technique is demonstrated using three plastic explosives, achieving good agreement with reference measurements obtained by THz time-domain spectroscopy in transmission geometry. The technique described in this study is readily scalable: replacing a single laser with a small laser array, with individual lasers operating at different frequencies will enable unambiguous identification of select materials. This paves the way towards non-contact, reflection-mode analysis and identification of granular materials at THz frequencies using quantum cascade lasers

    Origin of terminal voltage variations due to self-mixing in terahertz frequency quantum cascade lasers

    Get PDF
    We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current–voltage (I–V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I–V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL

    Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser

    Get PDF
    We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0–800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10⁻⁴   cm⁻¹ is resolvable
    corecore