1,290 research outputs found
Global marine bacterial diversity peaks at high latitudes in winter.
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms
The role of the North Atlantic Oscillation in controlling U.K. butterfly population size and phenology
Copyright @ 2012 The Authors. This article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.1. The North Atlantic Oscillation (NAO) exerts considerable control on U.K. weather. This study investigates the impact of the NAO on butterfly abundance and phenology using 34 years of data from the U.K. Butterfly Monitoring Scheme (UKBMS). 2. The study uses a multi-species indicator to show that the NAO does not affect overall U.K. butterfly population size. However, the abundance of bivoltine butterfly species, which have longer flight seasons, were found to be more likely to respond positively to the NAO compared with univoltine species, which show little or a negative response. 3. A positive winter NAO index is associated with warmer weather and earlier flight dates for Anthocharis cardamines (Lepidoptera: Pieridae), Melanargia galathea (Lepidoptera: Nymphalidae), Aphantopus hyperantus (Lepidoptera: Nymphalidae), Pyronia tithonus (Lepidoptera: Nymphalidae), Lasiommata megera (Lepidoptera: Nymphalidae) and Polyommatus icarus (Lepidoptera: Lycaenidae). In bivoltine species, the NAO affects the phenology of the first generation, the timing of which indirectly controls the timing of the second generation. 4. The NAO influences the timing of U.K. butterfly flight seasons more strongly than it influences population size.This study was supported by a multi-agency consortium led by the U.K. Department for Environment, Food and Rural Affairs (Defra), including the Countryside Council for Wales, the Joint Nature Conservation Committee, the Forestry Commission, Natural England, the Natural Environment Research Council, the Northern Ireland Environment Agency and Scottish Natural Heritage. This article is made available through the Brunel Open Access Publishing Fund
A robotic crawler exploiting directional frictional interactions: Experiments, numerics and derivation of a reduced model
We present experimental and numerical results for a model crawler which is able to extract net positional changes fromreciprocal shape changes, i.e. 'breathinglike' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations
Long reads: their purpose and place.
In recent years long-read technologies have moved from being a niche and specialist field to a point of relative maturity likely to feature frequently in the genomic landscape. Analogous to next generation sequencing, the cost of sequencing using long-read technologies has materially dropped whilst the instrument throughput continues to increase. Together these changes present the prospect of sequencing large numbers of individuals with the aim of fully characterizing genomes at high resolution. In this article, we will endeavour to present an introduction to long-read technologies showing: what long reads are; how they are distinct from short reads; why long reads are useful and how they are being used. We will highlight the recent developments in this field, and the applications and potential of these technologies in medical research, and clinical diagnostics and therapeutics
Young children's research: children aged 4-8 years finding solutions at home and at school
Children's research capacities have become increasingly recognised by adults, yet children remain excluded from the academy, with reports of their research participation generally located in adults' agenda. Such practice restricts children's freedom to make choices in matters affecting them, underestimates children’s capabilities and denies children particular rights. The present paper reports on one aspect of a small-scale critical ethnographic study adopting a constructivist grounded approach to conceptualise ways in which children's naturalistic behaviours may be perceived as research. The study builds on multi-disciplinary theoretical perspectives, embracing 'new' sociology, psychology, economics, philosophy and early childhood education and care (ECEC). Research questions include: 'What is the nature of ECEC research?' and 'Do children’s enquiries count as research?' Initially, data were collected from the academy: professional researchers (n=14) confirmed 'finding solutions' as a research behaviour and indicated children aged 4-8 years, their practitioners and primary carers as 'theoretical sampling'. Consequently, multi-modal case studies were constructed with children (n=138) and their practitioners (n=17) in three ‘good’ schools, with selected children and their primary carers also participating at home. This paper reports on data emerging from children aged 4-8 years at school (n=17) and at home (n=5). Outcomes indicate that participating children found diverse solutions to diverse problems, some of which they set themselves. Some solutions engaged children in high order thinking, whilst others did not; selecting resources and trialing activities engaged children in 'finding solutions'. Conversely, when children's time, provocations and activities were directed by adults, the quality of their solutions was limited, they focused on pleasing adults and their motivation to propose solutions decreased. In this study, professional researchers recognised 'finding solutions' as research behaviour and children aged 4-8 years naturalistically presented with capacities for finding solutions; however, the children's encounters with adults affected the solutions they found
A study of physical activity comparing people with Charcot Marie Tooth disease to normal control subjects
PURPOSE:
Charcot Marie Tooth disease (CMT) describes a group of hereditary neuropathies that present with distal weakness, wasting and sensory loss. Small studies indicate that people with CMT have reduced daily activity levels. This raises concerns as physical inactivity increases the risk of a range of co- morbidities, an important consideration in the long-term management of this disease. This study aimed to compare physical activity, patterns of sedentary behavior and overall energy expenditure of people with CMT and healthy matched controls.
METHODS:
We compared 20 people with CMT and 20 matched controls in a comparison of physical activity measurement over seven days, using an activity monitor. Patterns of sedentary behavior were explored through a power law analysis.
RESULTS:
Results showed a decrease in daily steps taken in the CMT group, but somewhat paradoxically, they demonstrate shorter bouts of sedentary activity and more frequent transitions from sedentary to active behaviors. No differences were seen in energy expenditure or time spent in sedentary, moderate or vigorous activity.
CONCLUSION:
The discrepancy between energy expenditure and number of steps could be due to higher energy requirements for walking, but also may be due to an over-estimation of energy expenditure by the activity monitor in the presence of muscle wasting. Alternatively, this finding may indicate that people with CMT engage more in activities or movement not related to walking. Implications for Rehabilitation Charcot-Marie-Tooth disease: • People with Charcot-Marie-Tooth disease did not show a difference in energy expenditure over seven days compared to healthy controls, but this may be due to higher energy costs of walking, and/or an over estimation of energy expenditure by the activity monitor in a population where there is muscle wasting. This needs to be considered when interpreting activity monitor data in people with neuromuscular diseases. • Compared to healthy controls, people with Charcot-Marie-Tooth disease had a lower step count over seven days, but exhibited more frequent transitions from sedentary to active behaviors • High Body Mass Index and increased time spent sedentary were related factors that have implications for general health status. • Understanding the profile of physical activity and behavior can allow targeting of rehabilitation interventions to address mobility and fitness
Ten Simple Rules for Taking Advantage of Git and GitHub.
Bioinformatics is a broad discipline in which one common denominator is the need to produce and/or use software that can be applied to biological data in different contexts. To enable and ensure the replicability and traceability of scientific claims, it is essential that the scientific publication, the corresponding datasets, and the data analysis are made publicly available [1,2]. All software used for the analysis should be either carefully documented (e.g., for commercial software) or, better yet, openly shared and directly accessible to others [3,4]. The rise of openly available software and source code alongside concomitant collaborative development is facilitated by the existence of several code repository services such as SourceForge, Bitbucket, GitLab, and GitHub, among others. These resources are also essential for collaborative software projects because they enable the organization and sharing of programming tasks between different remote contributors. Here, we introduce the main features of GitHub, a popular web-based platform that offers a free and integrated environment for hosting the source code, documentation, and project-related web content for open-source projects. GitHub also offers paid plans for private repositories (see Box 1) for individuals and businesses as well as free plans including private repositories for research and educational use.Biotechnology and Biological Sciences Research CouncilThis is the final version of the article. It first appeared from Public Library of Science via https://doi.org/10.1371/journal.pcbi.1004947
Low-Mass Binary Induced Outflows from Asymptotic Giant Branch Stars
A significant fraction of planetary nebulae (PNe) and proto-planetary nebulae
(PPNe) exhibit aspherical, axisymmetric structures, many of which are highly
collimated. The origin of these structures is not entirely understood, however
recent evidence suggests that many observed PNe harbor binary systems, which
may play a role in their shaping. In an effort to understand how binaries may
produce such asymmetries, we study the effect of low-mass (< 0.3 M_sun)
companions (planets, brown dwarfs and low-mass main sequence stars) embedded
into the envelope of a 3.0 M_sun star during three epochs of its evolution (Red
Giant Branch, Asymptotic Giant Branch (AGB), interpulse AGB). We find that
common envelope evolution can lead to three qualitatively different
consequences: (i) direct ejection of envelope material resulting in a
predominately equatorial outflow, (ii) spin-up of the envelope resulting in the
possibility of powering an explosive dynamo driven jet and (iii) tidal
shredding of the companion into a disc which facilitates a disc driven jet. We
study how these features depend on the secondary's mass and discuss
observational consequences.Comment: 24 pages, 6 figures, submitted to MNRA
- …