2,220 research outputs found

    Investigation of asymmetrical fiber metal hybrids used as load introduction element for thin-walled CFRP structures

    Get PDF
    Due to the industrial success of fiber reinforced plastic (FRP) light-weight components, the demand for joining methods suitable for FRP increases as well. Conventional joining elements like rivets and screws or simple clamping are designed for an application in conventional isotropic materials such as steel or aluminum. Therefore, by design these joining elements do not consider characteristic FRP properties such as the orthotropic (fiber) or the setting behavior of matrix materials that are subjected to a constant load. Thus, without any FRP specific adjustments, conventional joining elements will, in most cases, lead to poor results and an inferior joint. Hence, this investigation presents the concept of a layered local metal-hybrid area that can be used as a load introduction element, the "Multilayer-Insert". The design aspects of the hybrid area are discussed for several stacking options. Furthermore, the sensitivity to geometrical design variables and asymmetrical stackings are investigated by a simplified two-dimensional finite element model. The deduced parameter relations are discussed in the context of an application in an automated fiber placement process in order to formulate recommendations for the geometrical parameters

    Numerical Investigation of Residual Stresses in Welded Thermoplastic CFRP Structures

    Get PDF
    Using thermoplastics as the matrix in carbon fiber-reinforced polymers (CFRP) offers the possibility to make use of welded joints, which results in weight savings compared to conventional joining methods using mechanical fasteners. In this paper, the resulting temperature distribution in the material due to resistance welding is investigated by transient finite element (FE) simulations. To examine the effects on the component structure, a numerical modeling approach is created, which allows determining the residual stresses caused by the welding process. It is shown that the area of the structure, especially near the joining zone, is highly affected by the process, especially in terms of residual stresses. In particular, the stresses perpendicular to the fiber direction show failure relevant values up to a maximum of 221 MPa, which might lead to the formation of microcracks in the matrix. In turn, that is assumed to be critical in terms of the fatigue of welded composite structures. Thus, the suggested modeling approach provides residual stresses that can be used to determine their effects on the strength, structural stability, and fatigue of such composite structures. In a subsequent step, these findings could play an important role in the design process of thermoplastic composite structures

    Modeling He-rich subdwarfs through the hot-flasher Scenario

    Get PDF
    We present 1D numerical simulations aimed at studying the hot-flasher scenario for the formation of He-rich subdwarf stars. Sequences were calculated for a wide range of metallicities and physical assumptions, such as the stellar mass at the moment of the helium core flash. This allows us to study the two previously proposed flavors of the hot-flasher scenario ("deep" and "shallow" mixing cases) and to identify a third transition type. Our sequences are calculated by solving simultaneously the mixing and burning equations within a diffusive convection picture, and in the context of standard mixing length theory. We are able to follow chemical evolution during deep-mixing events in which hydrogen is burned violently, and therefore able to present a homogeneous set of abundances for different metallicities and varieties of hot-flashers. We extend the scope of our work by analyzing the effects of non-standard assumptions, such as the effect of chemical gradients, extra-mixing at convective boundaries, possible reduction in convective velocities, or the interplay between difussion and mass loss. Particular emphasis is placed on the predicted surface properties of the models. We find that the hot-flasher scenario is a viable explanation for the formation and surface properties of He-sdO stars. Our results also show that, during the early He-core burning stage, element diffusion may produce the transformation of (post hot-flasher) He-rich atmospheres into He-deficient ones. If this is so, then we find that He-sdO stars should be the progenitors of some of the hottest sdB stars.Comment: 13 pages, including 8 figures and 6 tables. Accepted for publication in A&A. Replaced to match the final version, including a note added in proof regarding PG 1544+48

    On the asymptotic giant branch star origin of peculiar spinel grain OC2

    Get PDF
    Microscopic presolar grains extracted from primitive meteorites have extremely anomalous isotopic compositions revealing the stellar origin of these grains. The composition of presolar spinel grain OC2 is different from that of all other presolar spinel grains. Large excesses of the heavy Mg isotopes are present and thus an origin from an intermediate-mass (IM) asymptotic giant branch (AGB) star was previously proposed for this grain. We discuss the isotopic compositions of presolar spinel grain OC2 and compare them to theoretical predictions. We show that the isotopic composition of O, Mg and Al in OC2 could be the signature of an AGB star of IM and metallicity close to solar experiencing hot bottom burning, or of an AGB star of low mass (LM) and low metallicity suffering very efficient cool bottom processing. Large measurement uncertainty in the Fe isotopic composition prevents us from discriminating which model better represents the parent star of OC2. However, the Cr isotopic composition of the grain favors an origin in an IM-AGB star of metallicity close to solar. Our IM-AGB models produce a self-consistent solution to match the composition of OC2 within the uncertainties related to reaction rates. Within this solution we predict that the 16O(p,g)17F and the 17O(p,a)14N reaction rates should be close to their lower and upper limits, respectively. By finding more grains like OC2 and by precisely measuring their Fe and Cr isotopic compositions, it may be possible in the future to derive constraints on massive AGB models from the study of presolar grains.Comment: 10 pages, 8 figures, accepted for publication on Astronomy & Astrophysic

    Very Late Thermal Pulses Influenced by Accretion in Planetary Nebulae

    Full text link
    We consider the possibility that a mass of ~10^{-5}-10^{-3} Msun flows back from the dense shell of planetary nebulae and is accreted by the central star during the planetary nebula phase. This backflowing mass is expected to have a significant specific angular momentum even in (rare) spherical planetary nebulae, such that a transient accretion disk might be formed. This mass might influence the occurrence and properties of a very late thermal pulse (VLTP), and might even trigger it. For example, the rapidly rotating outer layer, and the disk if still exist, might lead to axisymmetrical mass ejection by the VLTP. Unstable burning of accreted hydrogen might result in a mild flash of the hydrogen shell, also accompanied by axisymmetrical ejection.Comment: Submitted to New Astronom

    Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)

    Get PDF
    The assessment of uncertainties in landslide susceptibility modelling in a changing environment is an important, yet often neglected, task. In an Austrian case study, we investigated the uncertainty cascade in storylines of landslide susceptibility emerging from climate change and parametric landslide model uncertainty. In June 2009, extreme events of heavy thunderstorms occurred in the Styrian Basin, triggering thousands of landslides. Using a storyline approach, we discovered a generally lower landslide susceptibility for the pre-industrial climate, while for the future climate (2071–2100) a potential increase of 35 % in highly susceptible areas (storyline of much heavier rain) may be compensated for by much drier soils (−45 % areas highly susceptible to landsliding). However, the estimated uncertainties in predictions were generally high. While uncertainties related to within-event internal climate model variability were substantially lower than parametric uncertainties in the landslide susceptibility model (ratio of around 0.25), parametric uncertainties were of the same order as the climate scenario uncertainty for the higher warming levels (+3 and +4 K). We suggest that in future uncertainty assessments, an improved availability of event-based landslide inventories and high-resolution soil and precipitation data will help to reduce parametric uncertainties in landslide susceptibility models used to assess the impacts of climate change on landslide hazard and risk.</p

    The red tail of carbon stars in the LMC: Models meet 2MASS and DENIS observations

    Get PDF
    Carbon stars are known to exhibit systematically redder near-infrared colours with respect to M-type stars. In the near-infrared colour-magnitude diagrams provided by the 2MASS and DENIS surveys, the LMC C-type stars draw a striking red tail, well separated from the sequences of O-rich giants. So far, this conspicuous feature has been absent from any set of available isochrones, even the few existing ones that include the TP-AGB evolution of low- and intermediate-mass stars. To investigate such issue we simulate the complete 2MASS Ks vs.(J-Ks) data towards the LMC by means of a population synthesis approach, that relies on extended libraries of published stellar evolutionary tracks, including the TP-AGB phase. The simulations provide quite a detailed description of the several vertical fingers and inclined sequences seen in 2MASS data, due to both Galactic foreground and LMC O-rich stars. Instead, as mentioned, the red tail of C-stars sets a major difficulty: we find that TP-AGB models with solar-scaled molecular opacities, the usual assumption of existing AGB calculations, do not succeed in reproducing this feature. Our tests indicate that the main reason for this failure should not be ascribed to empirical Teff - (J-K) transformations for C-type stars. Instead, the discrepancy is simply removed by adopting new evolutionary models that account for the changes in molecular opacities as AGB stars get enriched in carbon via the third dredge-up (Marigo 2002). In fact, simulations that adopt these models are able to reproduce, for the first time, the red tail of C-stars in near-infrared CMDs. Finally, we point out that these simulations also provide useful indications about the efficiency of the third dredge-up process, and the pulsation modes of long-period variables.Comment: To appear in A&A. 14 pages, better if printed in colour. A version with high-resolution figures may be found in http://pleiadi.pd.astro.i

    Evolution of Low- and Intermediate-Mass Stars with [Fe/H] <= -2.5

    Full text link
    We present extensive sets of stellar models for 0.8-9.0Msun in mass and -5 <= [Fe/H] <= -2 and Z = 0 in metallicity. The present work focuses on the evolutionary characteristics of hydrogen mixing into the He-flash convective zones during the core and shell He flashes which occurs for the models with [Fe/H] <~ -2.5. Evolution is followed from the zero age MS to the TPAGB phase including the hydrogen engulfment by the He-flash convection during the RGB or AGB phase. There exist various types of mixing episodes of how the H mixing sets in and how it affects the final abundances at the surface. In particular, we find H ingestion events without dredge-ups that enables repeated neutron-capture nucleosynthesis in the He flash convective zones with 13 C(a,n)16 O as neutron source. For Z = 0, the mixing and dredge-up processes vary with the initial mass, which results in different final abundances in the surface. We investigate the occurrence of these events for various initial mass and metallicity to find the metallicity dependence for the He-flash driven deep mixing (He-FDDM) and also for the third dredge-up (TDU) events. In our models, we find He-FDDM for M <= 3Msun for Z = 0 and for M <~ 2Msun for -5 <~ [Fe/H] <~ -3. On the other hand, the occurrence of the TDU is limited to the mass range of ~1.5Msun to ~5Msun for [Fe/H] = -3, which narrows with decreasing metallicity. The paper also discusses the implications of the results of model computations for observations. We compared the abundance pattern of CNO abundances with observed metal-poor stars. The origins of most iron-deficient stars are discussed by assuming that these stars are affected by binary mass transfer. We also point out the existence of a blue horizontal branch for -4 <~ [Fe/H] <~ -2.5.Comment: 19 pages, 12 figures, accepted by MNRA

    On the linear fractional self-attracting diffusion

    Get PDF
    In this paper, we introduce the linear fractional self-attracting diffusion driven by a fractional Brownian motion with Hurst index 1/2<H<1, which is analogous to the linear self-attracting diffusion. For 1-dimensional process we study its convergence and the corresponding weighted local time. For 2-dimensional process, as a related problem, we show that the renormalized self-intersection local time exists in L^2 if 12<H<34\frac12<H<\frac3{4}.Comment: 14 Pages. To appear in Journal of Theoretical Probabilit
    • 

    corecore