5,844 research outputs found

    Environmental science applications with Rapid Integrated Mapping and analysis System (RIMS)

    Get PDF
    The Rapid Integrated Mapping and analysis System (RIMS) has been developed at the University of New Hampshire as an online instrument for multidisciplinary data visualization, analysis and manipulation with a focus on hydrological applications. Recently it was enriched with data and tools to allow more sophisticated analysis of interdisciplinary data. Three different examples of specific scientific applications with RIMS are demonstrated and discussed. Analysis of historical changes in major components of the Eurasian pan-Arctic water budget is based on historical discharge data, gridded observational meteorological fields, and remote sensing data for sea ice area. Express analysis of the extremely hot and dry summer of 2010 across European Russia is performed using a combination of near-real time and historical data to evaluate the intensity and spatial distribution of this event and its socioeconomic impacts. Integrative analysis of hydrological, water management, and population data for Central Asia over the last 30 years provides an assessment of regional water security due to changes in climate, water use and demography. The presented case studies demonstrate the capabilities of RIMS as a powerful instrument for hydrological and coupled human-natural systems research

    Development of Distributed Research Center for analysis of regional climatic and environmental changes

    Get PDF
    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far

    On the evaporation dynamics of trinitrotoluene microparticles on the glass surface

    Get PDF
    The results of measuring the time dependence of the concentration of trinitrotoluene (TNT) vapor over its solid microconcentrations on the glass surface with a low TNT concentration on the surface of 100 ng/cm2 are presented. Such microconcentrations of traces are typical for the conditions of anti-terrorist control of objects for the presence of TNT. The measurements were made using a portable multicapillary gas chromatograph (GC) EKHO-V-IDTS (Russia) with TNT vapor concentration. The threshold for determining the concentration of TNT vapor by the EKHO-V-IDTS gas chromatograph corresponds to the modern level and is equal to 10-14 g/cm3. Vapor sampling is performed by a vortex sampling device (VSD), which is used in the anti-terrorist control of objects. It is shown that the initial surface concentration of TNT traces of 100 ng/cm2 on the glass surface decreases to 12 ng/cm2 in a time of 2.6 h due to evaporation into an open half-space under laboratory conditions. The vapor concentration over the residual TNT concentration of 12 ng/cm2 corresponds to the GC sensitivity threshold for TNT vapor concentration equal to 10-14 g/cm3

    Compound-tunable embedding potential method to model local electronic excitations on ff-element ions in solids: Pilot relativistic coupled cluster study of Ce and Th impurities in yttrium orthophosphate, YPO4_4

    Full text link
    A method to simulate local properties and processes in crystals with impurities via constructing cluster models within the frame of the compound-tunable embedding potential (CTEP) and highly-accurate {\it ab initio} relativistic molecular-type electronic structure calculations is developed and applied to the Ce and Th-doped yttrium orthophosphate crystals, YPO4_4, having xenotime structure. Two embedded cluster models are considered, the "minimal" one, YO8_8@CTEPmin_{\rm min}, consisting of the central Y3+^{3+} cation and its first coordination sphere of eight O2^{2-} anions (i.~e.\ with broken P--O bonds), and its extended counterpart, Y(PO4_4)6_6@CTEPext_{\rm ext}, implying the full treatment of all atoms of the PO43_4^{3-} anions nearest to the central Y3+^{3+} cation. CTEPmin,ext_{\rm min,ext} denote here the corresponding cluster environment described within the CTEP method. The relativistic Fock-space coupled cluster (FS RCC) theory is applied to the minimal cluster model to study electronic excitations localized on Ce3+^{3+} and Th3+^{3+} impurity ions. Calculated transition energies for the cerium-doped xenotime are in a good agreement with the available experimental data (mean absolute deviation of ca.0.3 eV for 4f5d4f{\to}5d type transitions). For the thorium-doped crystal the picture of electronic states is predicted to be quite complicated, the ground state is expected to be of the 6d6d character. The uncertainty for the excitation energies of thorium-doped xenotime is estimated to be within 0.35 eV. Radiative lifetimes of excited states are calculated at the FS RCC level for both doped crystals. The calculated lifetime of the lowest 5d5d state of Ce3+^{3+} differs from the experimentally measured one by no more than twice

    Observation of kink instability during small B5.0 solar flare on 04 June, 2007

    Full text link
    Using multi-wavelength observations of SoHO/MDI, SOT-Hinode/blue-continuum (4504 \AA), G-band (4305 \AA), Ca II H (3968 \AA) and TRACE 171 \AA, we present the observational signature of highly twisted magnetic loop in AR 10960 during the period 04:43 UT-04:52 UT at 4 June, 2007. SOT-Hinode/blue-continuum (4504 \AA) observations show that penumbral filaments of positive polarity sunspot have counter-clock wise twist, which may be caused by the clock-wise rotation of the spot umbrae. The coronal loop, whose one footpoint is anchored in this sunspot, shows strong right-handed twist in chromospheric SOT-Hinode/Ca II H (3968 \AA) and coronal TRACE 171 \AA\, images. The length and the radius of the loop are LL\sim80 Mm and aa\sim4.0 Mm respectively. The distance between neighboring turns of magnetic field lines (i.e. pitch) is estimated as \approx 10 Mm. The total twist angle, Φ\Phi\sim12π\pi (estimated for the homogeneous distribution of the twist along the loop), is much larger than the Kruskal -Shafranov instability criterion. We detected clear double structure of the loop top during 04:47-04:51 UT on TRACE 171 \AA \ images, which is consistent with simulated kink instability in curved coronal loops (T{\"o}r{\"o}k et al. 2004). We suggest, that the kink instability of this twisted magnetic loop triggered B5.0 class solar flare, which occurred between 04:40 UT and 04:51 UT in this active region.Comment: 24 pages, 5 Figures; The Astrophysical Journa

    Broadband velocity modulation spectroscopy of HfF^+: towards a measurement of the electron electric dipole moment

    Get PDF
    Precision spectroscopy of trapped HfF^+ will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm^(-1) using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states including those that will be necessary for state preparation and readout in an actual eEDM experiment.Comment: 13 pages, 7 figures, 3 table

    Nucleon resonances in omega photoproduction

    Full text link
    The role of the nucleon resonances (NN^*) in ω\omega photoproduction is investigated by using the resonance parameters predicted by Capstick and Roberts [Phys. Rev. D {\bf 46}, 2864 (1992); {\bf 49}, 4570 (1994)]. In contrast with the previous investigations based on the SU(6)×O(3){SU}(6) \times {O}(3) limit of the constituent quark model, the employed NγNN^* \to \gamma N and NωNN^* \to \omega N amplitudes include the configuration mixing effects due to the residual quark-quark interactions. The contributions from the nucleon resonances are found to be significant relative to the non-resonant amplitudes in changing the differential cross sections at large scattering angles and various spin observables. In particular, we suggest that a crucial test of our predictions can be made by measuring the parity asymmetry and beam-target double asymmetry at forward scattering angles.Comment: 18 pages, REVTeX, 8 figures, to appear in Phys. Rev.

    Observation of Radiative Leptonic Decay of the Tau Lepton

    Full text link
    Using 4.68 fb^{-1} of e^+e^- annihilation data collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR) we have studied tau radiative decays tau -> mu nu nu gamma and tau -> e nu nu gamma. For a 10 MeV minimum photon energy in the tau rest frame, the branching fraction of radiative tau decay to a muon or electron is measured to be (3.61+-0.16+-0.35)*10^{-3} or (1.75+-0.06+-0.17)*10^{-2}, respectively. The branching fractions are in agreement with the Standard Model theoretical predictions.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Resonant Structure of τ3ππ0ντ\tau\to 3\pi\pi^{0}\nu_{\tau} and τωπντ\tau\to \omega\pi\nu_{\tau} Decays

    Full text link
    The resonant structure of the four pion final state in the decay τ3ππ0ντ\tau \to 3\pi\pi^0\nu_\tau is analyzed using 4.27 million τ+τ\tau^+\tau^- pairs collected by the CLEO II experiment. We search for second class currents in the decay τωπντ\tau \to \omega\pi\nu_\tau using spin-parity analysis and establish an upper limit on the non-vector current contribution. The mass and width of the ρ\rho' resonance are extracted from a fit to the τωπντ\tau \to \omega\pi\nu_\tau spectral function. A partial wave analysis of the resonant structure of the τ3ππ0ντ\tau \to 3\pi\pi^0\nu_\tau decay is performed; the spectral decomposition of the four pion system is dominated by the ωπ\omega\pi and a1πa_1 \pi final states.Comment: 34 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore