72 research outputs found

    Glycan-independent role of calnexin in the intracellular retention of Charcot-Marie-tooth 1A Gas3/PMP22 mutants

    Get PDF
    Missense point mutations in Gas3/PMP22 are responsible for the peripheral neuropathies Charcot-Marie-Tooth 1A and Dejerine Sottas syndrome. These mutations induce protein misfolding with the consequent accumulation of the proteins in the endoplasmic reticulum and the formation of aggresomes. During folding, Gas3/PMP22 associates with the lectin chaperone calnexin. Here, we show that calnexin interacts with the misfolded transmembrane domains of Gas3/PMP22, fused to green fluorescent protein, in a glycan-independent manner. In addition, photobleaching experiments in living cells revealed that Gas3/PMP22-green fluorescent protein mutants are mobile but diffuse at almost half the diffusion coefficient of wild type protein. Our results support emerging models for a glycan-independent chaperone role for calnexin and for the mechanism of retention of misfolded membrane proteins in the endoplasmic reticulum

    Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance.

    Get PDF
    Background: Fusarium verticillioides causes ear rot in maize (Zea mays L.) and accumulation of mycotoxins, that affect human and animal health. Currently, chemical and agronomic measures to control Fusarium ear rot are not very effective and selection of more resistant genotypes is a desirable strategy to reduce contaminations. A deeper knowledge of molecular events and genetic basis underlying Fusarium ear rot is necessary to speed up progress in breeding for resistance. Results: A next-generation RNA-sequencing approach was used for the first time to study transcriptional changes associated with F. verticillioides inoculation in resistant CO441 and susceptible CO354 maize genotypes at 72 hours post inoculation. More than 100 million sequence reads were generated for inoculated and uninoculated control plants and analyzed to measure gene expression levels. Comparison of expression levels between inoculated vs. uninoculated and resistant vs. susceptible transcriptomes revealed a total number of 6,951 differentially expressed genes. Differences in basal gene expression were observed in the uninoculated samples. CO441 genotype showed a higher level of expression of genes distributed over all functional classes, in particular those related to secondary metabolism category. After F. verticillioides inoculation, a similar response was observed in both genotypes, although the magnitude of induction was much greater in the resistant genotype. This response included higher activation of genes involved in pathogen perception, signaling and defense, including WRKY transcription factors and jasmonate/ ethylene mediated defense responses. Interestingly, strong differences in expression between the two genotypes were observed in secondary metabolism category: pathways related to shikimate, lignin, flavonoid and terpenoid biosynthesis were strongly represented and induced in the CO441 genotype, indicating that selection to enhance these traits is an additional strategy for improving resistance against F. verticillioides infection. Conclusions: The work demonstrates that the global transcriptional analysis provided an exhaustive view of genes involved in pathogen recognition and signaling, and controlling activities of different TFs, phytohormones and secondary metabolites, that contribute to host resistance against F. verticillioides. This work provides an important source of markers for development of disease resistance maize genotypes andmay have relevance to study other pathosystems involving mycotoxin-producing fungi

    Klebsiella pneumoniae carrying multiple alleles of antigen 43-encoding gene of Escherichia coli associated with biofilm formation

    Get PDF
    A clinical strain of Klebsiella pneumoniae typed as sequence type 307 carrying three different alleles of the flu gene encoding the Escherichia coli virulence factor antigen 43 associated with biofilm formation was detected and characterized. The flu alleles are located in the chromosome inside putative integrative conjugative elements. The strain displays the phenotypes associated with Ag43, i.e. bi-phasic colony morphology and enhanced biofilm production. Furthermore, the strain produces low amount of capsule known to affect Ag43 function. Analysis of 1431 worldwide deposited genomes revealed that 3.7% Klebsiella pneumoniae carry one or two flu alleles

    Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis

    Get PDF
    Background: Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. Results: Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. Conclusion: Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response. We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races. Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981

    Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes

    Get PDF
    Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes.Molecular Psychiatry advance online publication, 31 May 2016; doi:10.1038/mp.2016.84

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Electrodeposition of nickel-iron hydroxide-based catalysts for oxygen evolution reaction in anion exchange membrane electrolysers

    No full text
    reservedMitigare l’impatto del cambiamento climatico è una delle sfide globali più urgenti, che vede numerosi paesi impegnati a raggiungere gli obiettivi di sviluppo sostenibile e decarbonizzazione. Per conseguire tali traguardi, l'uso dell'idrogeno verde, ottenuto tramite l'elettrolisi dell'acqua, rappresenta una soluzione fondamentale per affrontare la sfida della decarbonizzazione. Di conseguenza, negli ultimi anni si è osservato un crescente interesse nella produzione di idrogeno attraverso il processo di elettrolisi dell’acqua. In questo contesto, la presente ricerca si concentra sulla sintesi di catalizzatori a base di idrossidi di Nichel-Ferro (NiFe LDH) tramite il processo di elettrodeposizione. Questi catalizzatori hanno lo scopo di migliorare la cinetica della reazione di evoluzione di ossigeno, e negli ultimi anni sono stati utilizzati con successo in elettrolizzatori che utilizzano membrane a scambio anionico (AEM). L’obiettivo principale del lavoro di tesi consiste nell’ottimizzazione della sintesi tramite elettrodeposizione, in modo da ottenere un deposito controllato di catalizzatore, tramite un processo riproducibile e scalabile in ottica industriale. Per farlo sono state analizzate due tecniche distinte di deposizione, valutando l’effetto di diversi parametri, come ad esempio il tipo e la concentrazione di reagenti utilizzati all’interno del bagno di deposizione e il tempo di deposizione. La caratterizzazione chimico-fisica dei campioni è stata condotta tramite diffrazione a raggi X, microscopia elettronica a scansione, spettroscopia fotoelettronica a raggi X e spettroscopia Raman. Le performance catalitiche dei campioni inoltre sono state valutate a seguito della caratterizzazione elettrochimica, svolta utilizzando tecniche di voltammetrie cicliche, voltammetrie lineari con elettrodo a disco anello rotante, prove di capacitanza specifica e rampe di corrente effettuate utilizzando un elettrolizzatore a singola cella di dimensioni ridotte. La caratterizzazione dei campioni sintetizzati è servita per confrontare i due metodi di elettrodeposizione sviluppati con il metodo di sintesi e deposizione del catalizzatore anodico di riferimento.Mitigating the impact of climate change is one of the most urgent global challenges, which sees numerous countries committed to achieving the sustainable development and decarbonisation goals. To achieve these goals, the use of green hydrogen, obtained through the electrolysis of water, represents a fundamental solution to address the challenge of decarbonisation. As a result, in recent years there has been a growing interest in the production of hydrogen through the process of electrolysis of water. In this context, the present research focuses on the synthesis by electrodeposition of catalysts based on Nickel-Iron hydroxides (NiFe LDH) to improve the kinetics of the oxygen evolution reaction, in anion exchange membrane electrolysers (AEM). The main objective is the optimization of the synthesis through electrodeposition, in order to obtain a controlled deposition of catalyst, through a reproducible and scalable process from an industrial perspective. To do this, two deposition techniques and the effect of different parameters, such as the type of precursors and deposition time, were analyzed. The physicochemical characterization of the samples was conducted via XPS, XRD, SEM and Raman analyses, while the electrochemical activity was evaluated in a 3-electrode cell and using a small-sized single-cell stack
    • …
    corecore