19 research outputs found

    Macrocrustaceans associated with reefs of Phragmatopoma caudata Krøyer in Mörch, 1863 (Polychaeta: Sabellariidae) and rocky shore in the Northeastern Brazil

    Get PDF
    Ecosystem engineering species create, modify, and/or maintain the characteristics of the environment. The polychaete Phragmatopoma caudata builds large sand reefs in the intertidal region of the Brazilian coast with high structural complexity, favoring the increase of diversity and interactions among the species associated. However, there are no studies concerning the association of polychaetes with crustacean macrofauna in the northeastern Brazil ecoregion, leaving an information gap on baseline biodiversity. Our aim was to analyze the effect of P. caudata colonies (PC) on the local diversity of macrocrustaceans compared to the rocky shore (RS) microhabitat. Monthly collections were carried out in low tide from September 2015 to August 2016 on 10 × 10 m quadrants for fauna and environmental variables (temperature and salinity) samples. In each microhabitat, the capture effort was two hours by two researchers. We collected 3,390 individuals, 60% associated with the colonies of PC and 40% with the RS. The PC obtained higher Shannon diversity, Pielou evenness and species richness coupled with milder water temperature and salinity conditions (minor air exposure during tide), compared to the RS that obtained greater species dominance and more extreme abiotic conditions (major air exposure). The Porcellanidae family stood out because all its species were highly abundant and had high occurrence in the colonies. The tropical Brazil porcelain crab Pachycheles greeleyi was dominant in both microhabitats (major dominance in PC). The structural complexity in the reefs of PC promoted higher availability of niches for the species, as more shelter for the resident species and refugium for temporary species with preference for more complex microhabitats. Conservation managers should prioritize the health of these colonies and subsequent species that constitute important ecosystemic and fishery resources

    New record of the Six-holed Keyhole Urchin, Leodia sexiesperforata (Leske, 1778) (Clypeasteroida, Mellitidae), from the Brazilian coast, with an updated distribution map

    Get PDF
    A new record of Leodia sexiesperforata is reported from the coast of Rio Grande do Norte state, northeastern Brazil. An updated distribution map based on data collected from literature, museums, and scientific collections is also presented. This new report fills a distribution gap on the coast of northeastern Brazil. Leodia sexiesperforata has a continuous range between the states of Ceará and Alagoas

    Updated cardiovascular prevention guideline of the Brazilian Society of Cardiology: 2019

    Get PDF
    Sem informação113478788

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Shell occupation by the South Atlantic endemic hermit crab Loxopagurus loxochelis (Moreira, 1901) (Anomura: Diogenidae)

    No full text
    The evaluation of population characteristics, particularly those of endemic species, aids in population preservation and management. Hermit crabs present an innate behavior of occupying shells, which tends to individual needs and limits their distribution. This study characterized the pattern of occupation of gastropod shells by the hermit Loxopagurus loxochelis in three bays of the southwestern coast of Brazil. Monthly collections were made from January/1998 to December/1999 in the bays Ubatumirim (UBM), Ubatuba (UBA) and Mar Virado (MV) with a shrimping boat. Overall, ten species of gastropod shells were occupied by L. loxochelis. The shell of Olivancillaria urceus represented 66.8% of those occupied. Morphometric relationships demonstrated a differential occupation of the more abundant shells among demographic groups, where most of the males occupied O. urceus, non-ovigerous females occupied O. urceus and Buccinanops cochlidium, and ovigerous females occupied B. cochlidium and Stramonita haemastoma. Most of the individuals occupied the more abundant shells, considered adequate for the morphology of this hermit crab species. Thus, the studied bays seem to be stable and propitious environments for population perpetuation and the settlement of new individuals

    Shell occupation by the South Atlantic endemic hermit crab Loxopagurus loxochelis (Moreira, 1901) (Anomura: Diogenidae)

    No full text
    The evaluation of population characteristics, particularly those of endemic species, aids in population preservation and management. Hermit crabs present an innate behavior of occupying shells, which tends to individual needs and limits their distribution. This study characterized the pattern of occupation of gastropod shells by the hermit Loxopagurus loxochelis in three bays of the southwestern coast of Brazil. Monthly collections were made from January/1998 to December/1999 in the bays Ubatumirim (UBM), Ubatuba (UBA) and Mar Virado (MV) with a shrimping boat. Overall, ten species of gastropod shells were occupied by L. loxochelis. The shell of Olivancillaria urceus represented 66.8% of those occupied. Morphometric relationships demonstrated a differential occupation of the more abundant shells among demographic groups, where most of the males occupied O. urceus, non-ovigerous females occupied O. urceus and Buccinanops cochlidium, and ovigerous females occupied B. cochlidium and Stramonita haemastoma. Most of the individuals occupied the more abundant shells, considered adequate for the morphology of this hermit crab species. Thus, the studied bays seem to be stable and propitious environments for population perpetuation and the settlement of new individuals
    corecore