36 research outputs found
I-FABP as a Potential Marker for Intestinal Barrier Loss in Porcine Polytrauma
Polytrauma and concomitant hemorrhagic shock can lead to intestinal damage and subsequent multiple organ dysfunction syndrome. The intestinal fatty acid-binding protein (I-FABP) is expressed in the intestine and appears quickly in the circulation after intestinal epithelial cell damage. This porcine animal study investigates the I-FABP dynamics in plasma and urine after polytrauma. Furthermore, it evaluates to what extent I-FABP can also act as a marker of intestinal damage in a porcine polytrauma model. Eight pigs (Sus scrofa) were subjected to polytrauma which consisted of lung contusion, tibial fracture, liver laceration, and hemorrhagic shock followed by blood and fluid resuscitation and fracture fixation with an external fixator. Eight sham animals were identically instrumented but not injured. Afterwards, intensive care treatment including mechanical ventilation for 72 h followed. I-FABP levels in blood and urine were determined by ELISA. In addition, immunohistological staining for I-FABP, active caspase-3 and myeloperoxidase were performed after 72 h. Plasma and urine I-FABP levels were significantly increased shortly after trauma. I-FABP expression in intestinal tissue showed significantly lower expression in polytraumatized animals vs. sham. Caspase-3 and myeloperoxidase expression in the immunohistological examination were significantly higher in the jejunum and ileum of polytraumatized animals compared to sham animals. This study confirms a loss of intestinal barrier after polytrauma which is indicated by increased I-FABP levels in plasma and urine as well as decreased I-FABP levels in immunohistological staining of the intestine
Foregut caustic injuries: results of the world society of emergency surgery consensus conference
ORIENTATION AND IMPROVEMENT OF EDUCATION OF STAFF FOR SUSTAINABLE DEVELOPMENT OF AGRICULTURE AND ENVIRONMENT PROTECTION
Authors of this paper research necessaries of orientation and improvement of
education of staff for purpose of sustainable development of agriculture and
environment protection. According with global questions of education
improvement, this paper especially realizes basis and aims of high education in
function of orientation sustainable development agriculture and environment
protection. In addition, it point was on role of highly professional staff in function
of abetment of development organic agriculture and healthy safe food production
on family’s husbandry and farm economies.
Improvement of education highly professional agricultural staff in our
country is connected with Bologna declaration demands and developing of
Bologna process in Europe. From this point education of agricultural staff, we must
have in mind facts that European market will become unique market for students
and professors
I-FABP as a Potential Marker for Intestinal Barrier Loss in Porcine Polytrauma
Polytrauma and concomitant hemorrhagic shock can lead to intestinal damage and subsequent multiple organ dysfunction syndrome. The intestinal fatty acid-binding protein (I-FABP) is expressed in the intestine and appears quickly in the circulation after intestinal epithelial cell damage. This porcine animal study investigates the I-FABP dynamics in plasma and urine after polytrauma. Furthermore, it evaluates to what extent I-FABP can also act as a marker of intestinal damage in a porcine polytrauma model. Eight pigs (Sus scrofa) were subjected to polytrauma which consisted of lung contusion, tibial fracture, liver laceration, and hemorrhagic shock followed by blood and fluid resuscitation and fracture fixation with an external fixator. Eight sham animals were identically instrumented but not injured. Afterwards, intensive care treatment including mechanical ventilation for 72 h followed. I-FABP levels in blood and urine were determined by ELISA. In addition, immunohistological staining for I-FABP, active caspase-3 and myeloperoxidase were performed after 72 h. Plasma and urine I-FABP levels were significantly increased shortly after trauma. I-FABP expression in intestinal tissue showed significantly lower expression in polytraumatized animals vs. sham. Caspase-3 and myeloperoxidase expression in the immunohistological examination were significantly higher in the jejunum and ileum of polytraumatized animals compared to sham animals. This study confirms a loss of intestinal barrier after polytrauma which is indicated by increased I-FABP levels in plasma and urine as well as decreased I-FABP levels in immunohistological staining of the intestine
Club cell protein (CC)16 as potential lung injury marker in a porcine 72 h polytrauma model
Abstract
Background
Polytrauma and respiratory tract damage after thoracic trauma cause about 25% of mortality among severely injured patients. Thoracic trauma can lead to the development of severe lung complications such as acute respiratory distress syndrome, and is, therefore, of great interest for monitoring in intensive care units (ICU). In recent years, club cell protein (CC)16 with its antioxidant properties has proven to be a potential outcome-related marker. In this study, we evaluated whether CC16 constitutes as a marker of lung damage in a porcine polytrauma model.
Methods
In a 72 h ICU polytrauma pig model (thoracic trauma, tibial fracture, hemorrhagic shock, liver laceration), blood plasma samples (0, 3, 9, 24, 48, 72 h), BAL samples (72 h) and lung tissue (72 h) were collected. The trauma group (PT) was compared to a sham group. CC16 as a possible biomarker for lung injury in this model, and IL-8 concentrations as known indicator for ongoing inflammation during trauma were determined by ELISA. Histological analysis of ZO-1 and determination of total protein content were used to show barrier disruption and edema formation in lung tissue from the trauma group.
Results
Systemic CC16 levels were significantly increased early after polytrauma compared vs. sham. After 72 h, CC16 concentration was significantly increased in lung tissue as well as in BAL in PT vs. sham. Similarly, IL-8 and total protein content in BAL were significantly increased in PT vs. sham. Evaluation of ZO-1 staining showed significantly lower signal intensity for polytrauma.
Conclusion
The data confirm for the first time in a larger animal polytrauma model that lung damage was indicated by systemic and/or local CC16 response. Thus, early plasma and late BAL CC16 levels might be suitable to be used as markers of lung injury in this polytrauma model.
</jats:sec
Club cell protein (CC)16 as potential lung injury marker in a porcine 72 h polytrauma model
Background: Polytrauma and respiratory tract damage after thoracic trauma cause about 25% of mortality among severely injured patients. Thoracic trauma can lead to the development of severe lung complications such as acute respiratory distress syndrome, and is, therefore, of great interest for monitoring in intensive care units (ICU). In recent years, club cell protein (CC)16 with its antioxidant properties has proven to be a potential outcome-related marker. In this study, we evaluated whether CC16 constitutes as a marker of lung damage in a porcine polytrauma model.
Methods: In a 72 h ICU polytrauma pig model (thoracic trauma, tibial fracture, hemorrhagic shock, liver laceration), blood plasma samples (0, 3, 9, 24, 48, 72 h), BAL samples (72 h) and lung tissue (72 h) were collected. The trauma group (PT) was compared to a sham group. CC16 as a possible biomarker for lung injury in this model, and IL-8 concentrations as known indicator for ongoing inflammation during trauma were determined by ELISA. Histological analysis of ZO-1 and determination of total protein content were used to show barrier disruption and edema formation in lung tissue from the trauma group.
Results: Systemic CC16 levels were significantly increased early after polytrauma compared vs. sham. After 72 h, CC16 concentration was significantly increased in lung tissue as well as in BAL in PT vs. sham. Similarly, IL-8 and total protein content in BAL were significantly increased in PT vs. sham. Evaluation of ZO-1 staining showed significantly lower signal intensity for polytrauma.
Conclusion: The data confirm for the first time in a larger animal polytrauma model that lung damage was indicated by systemic and/or local CC16 response. Thus, early plasma and late BAL CC16 levels might be suitable to be used as markers of lung injury in this polytrauma model
White matter microstructural abnormalities in children with severe congenital hypothyroidism
Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome
BACKGROUND Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C).OBJECTIVES A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE).METHODS One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina.RESULTS Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081).CONCLUSIONS Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402) (C) 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Fondation Assistance Publique - Hopitaux de Paris, Paris, Franc
