11 research outputs found

    Pyridine Controlled Tin Perovskite Crystallization

    Get PDF
    Controlling the crystallization of perovskite in a thin film is essential in making solar cells. Processing tin based perovskite films from solution is challenging because of the uncontrollable faster crystallization of tin than the most used lead perovskite. The best performing devices are prepared by depositing perovskite from dimethyl sulfoxide because it slows down the assembly of the tin iodine network that forms perovskite. However, while dimethyl sulfoxide seems the best solution to control the crystallization, it oxidizes tin during processing. This work demonstrates that 4 tert butyl pyridine can replace dimethyl sulfoxide to control the crystallization without oxidizing tin. We show that tin perovskite films deposited from pyridine have a 1 order of magnitude lower defect density, which promotes charge mobility and photovoltaic performanc

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    AbstractLarge datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.</jats:p

    Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells

    No full text
    Low toxicity and an ideal energy bandgap make two-dimensional (2D) Ruddlesden-Popper tin-based halide perovskites a promising photovoltaic material. However, the disordered crystal orientation and the oxidation of Sn2+ to Sn4+ still need to be addressed. Here, we demonstrate that the annealing of FASnI3 assisted by phenyl ethylammonium chloride enables the formation of more ordered 2D tin-based perovskite crystals oriented vertically. We use in situ synchrotron-based grazing incident X-ray diffraction to correlate the higher crystal orientation to the better device performance. We measured a maximum power conversion efficiency of more than 9%. Furthermore, we demonstrate that the phenyl ethylammonium chloride acts as a barrier layer at the surface of the crystals protecting the tin from the oxidation. Hence, this work paves the way for more efficient and stable lead-free perovskite solar cells

    Solvents for Processing Stable Tin Halide Perovskites

    No full text
    Tin is one of the most promising alternatives to lead to make lead-free halide perovskites for optoelectronics. However, the stability of tin-based perovskites is hindered by the oxidation of Sn(II) to Sn(IV). Recent works established that dimethyl sulfoxide, which is one of the best-performing solvents for processing perovskite, is the primary source of tin oxidation. The quest for a stable solvent could be a game-changer in the stability of tin-based perovskites. Starting from a database of over 2000 solvents, we identified a series of 12 new solvents suitable for the processing of formamidinium tin iodide perovskite (FASnI3) by investigating (1) the solubility of the precursor chemicals FAI and SnI2, (2) the thermal stability of the precursor solution, and (3) the possibility of forming perovskite. Finally, we demonstrate a new solvent system to produce solar cells outperforming those based on DMSO. Our work provides guidelines for further identification of new solvents or solvent mixtures for preparing stable tin-based perovskites

    Fluoride Chemistry in Tin Halide Perovskites

    No full text
    Tin is the frontrunner for substituting toxic lead in perovskite solar cells. However, tin suffers the detrimental oxidation of SnII to SnIV. Most of reported strategies employ SnF2 in the perovskite precursor solution to prevent SnIV formation. Nevertheless, the working mechanism of this additive remains debated. To further elucidate it, we investigate the fluoride chemistry in tin halide perovskites by complementary analytical tools. NMR analysis of the precursor solution discloses a strong preferential affinity of fluoride anions for SnIV over SnII, selectively complexing it as SnF4. Hard X-ray photoelectron spectroscopy on films shows the lower tendency of SnF4 than SnI4 to get included in the perovskite structure, hence preventing the inclusion of SnIV in the film. Finally, small-angle X-ray scattering reveals the strong influence of fluoride on the colloidal chemistry of precursor dispersions, directly affecting perovskite crystallization

    Ionic Liquid Stabilizing High-Efficiency Tin Halide Perovskite Solar Cells

    No full text
    Tin halide perovskites attract incremental attention to deliver lead-free perovskite solar cells. Nevertheless, disordered crystal growth and low defect formation energy, related to Sn(II) oxidation to Sn(IV), limit the efficiency and stability of solar cells. Engineering the processing from perovskite precursor solution preparation to film crystallization is crucial to tackle these issues and enable the full photovoltaic potential of tin halide perovskites. Herein, the ionic liquid n-butylammonium acetate (BAAc) is used to tune the tin coordination with specific O…Sn chelating bonds and NH…X hydrogen bonds. The coordination between BAAc and tin enables modulation of the crystallization of the perovskite in a thin film. The resulting BAAc-containing perovskite films are more compact and have a preferential crystal orientation. Moreover, a lower amount of Sn(IV) and related chemical defects are found for the BAAc-containing perovskites. Tin halide perovskite solar cells processed with BAAc show a power conversion efficiency of over 10%. This value is retained after storing the devices for over 1000 h in nitrogen. This work paves the way toward a more controlled tin-based perovskite crystallization for stable and efficient lead-free perovskite photovoltaics

    Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells

    No full text
    Li M, Zuo W-W, Yang Y-G, et al. Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells. ACS Energy Letters. 2020;5(6):1923-1929.Low toxicity and an ideal energy bandgap make two-dimensional (2D) Ruddlesden–Popper tin-based halide perovskites a promising photovoltaic material. However, the disordered crystal orientation and the oxidation of Sn2+ to Sn4+ still need to be addressed. Here, we demonstrate that the annealing of FASnI3 assisted by phenyl ethylammonium chloride enables the formation of more ordered 2D tin-based perovskite crystals oriented vertically. We use in situ synchrotron-based grazing incident X-ray diffraction to correlate the higher crystal orientation to the better device performance. We measured a maximum power conversion efficiency of more than 9%. Furthermore, we demonstrate that the phenyl ethylammonium chloride acts as a barrier layer at the surface of the crystals protecting the tin from the oxidation. Hence, this work paves the way for more efficient and stable lead-free perovskite solar cells

    pi-Conjugated Carbazole Cations Enable Wet-Stable Quasi-2D Perovskite Photovoltaics

    No full text
    Quasi two dimensional halide perovskites are commonly used in solar cells, as they are more stable than their three dimensional analogues. Nevertheless, it is still challenging to meet the stability requirements under high humidity conditions. Here, we design amp; 960; conjugated carbazole CA cations to increase the water resistance of perovskite. We control the crystallization kinetics by the anti solvent strategy to locate the hydrophobic low amp; 10216;n amp; 10217; value phase on the surface of the perovskite film. The resulting CA2MA4Pb5I16 film does not decompose after being immersed in water for several minutes. We further regulate the vertical orientation of perovskite crystals by introducing NH4SCN additive, resulting in improved carrier transport dynamics. As a result, the optimized CA2MA4Pb5I16 device achieves a notable power conversion efficiency PCE of 18.23 and retains more than 85 of the original PCE after 2000 h under a relative humidity of 65 at 25 C. This is one of the most stable reported unencapsulated perovskite solar cells in high humidity environment
    corecore