9 research outputs found
Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis
Macrophages play an essential role in rheumatoid arthritis. Depending on their phenotype (M1 or M2), they can play a role in the initiation or resolution of inflammation. The M1/M2 ratio in rheumatoid arthritis is higher than in healthy controls. Despite this, no treatment targeting specifically macrophages is currently used in clinics. Thus, devising strategies to selectively deplete proinflammatory macrophages and promote anti-inflammatory macrophages could be a promising therapeutic approach. State-of-the-art molecular interaction maps of M1 and M2 macrophages in rheumatoid arthritis are available and represent a dense source of knowledge; however, these maps remain limited by their static nature. Discrete dynamic modelling can be employed to study the emergent behaviours of these systems. Nevertheless, handling such large-scale models is challenging. Due to their massive size, it is computationally demanding to identify biologically relevant states in a cell- and disease-specific context. In this work, we developed an efficient computational framework that converts molecular interaction maps into Boolean models using the CaSQ tool. Next, we used a newly developed version of the BMA tool deployed to a high-performance computing cluster to identify the models' steady states. The identified attractors are then validated using gene expression data sets and prior knowledge. We successfully applied our framework to generate and calibrate the M1 and M2 macrophage Boolean models for rheumatoid arthritis. Using KO simulations, we identified NFkB, JAK1/JAK2, and ERK1/Notch1 as potential targets that could selectively suppress proinflammatory macrophages and GSK3B as a promising target that could promote anti-inflammatory macrophages in rheumatoid arthritis
CATH 2024: CATH-AlphaFlow Doubles the Number of Structures in CATH and Reveals Nearly 200 New Folds
CATH (https://www.cathdb.info) classifies domain structures from experimental protein structures in the PDB and predicted structures in the AlphaFold Database (AFDB). To cope with the scale of the predicted data a new NextFlow workflow (CATH-AlphaFlow), has been developed to classify high-quality domains into CATH superfamilies and identify novel fold groups and superfamilies. CATH-AlphaFlow uses a novel state-of-the-art structure-based domain boundary prediction method (ChainSaw) for identifying domains in multi-domain proteins. We applied CATH-AlphaFlow to process PDB structures not classified in CATH and AFDB structures from 21 model organisms, expanding CATH by over 100%. Domains not classified in existing CATH superfamilies or fold groups were used to seed novel folds, giving 253 new folds from PDB structures (September 2023 release) and 96 from AFDB structures of proteomes of 21 model organisms. Where possible, functional annotations were obtained using (i) predictions from publicly available methods (ii) annotations from structural relatives in AFDB/UniProt50. We also predicted functional sites and highly conserved residues. Some folds are associated with important functions such as photosynthetic acclimation (in flowering plants), iron permease activity (in fungi) and post-natal spermatogenesis (in mice). CATH-AlphaFlow will allow us to identify many more CATH relatives in the AFDB, further characterising the protein structure landscape
Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis
Abstract Macrophages play an essential role in rheumatoid arthritis. Depending on their phenotype (M1 or M2), they can play a role in the initiation or resolution of inflammation. The M1/M2 ratio in rheumatoid arthritis is higher than in healthy controls. Despite this, no treatment targeting specifically macrophages is currently used in clinics. Thus, devising strategies to selectively deplete proinflammatory macrophages and promote anti-inflammatory macrophages could be a promising therapeutic approach. State-of-the-art molecular interaction maps of M1 and M2 macrophages in rheumatoid arthritis are available and represent a dense source of knowledge; however, these maps remain limited by their static nature. Discrete dynamic modelling can be employed to study the emergent behaviours of these systems. Nevertheless, handling such large-scale models is challenging. Due to their massive size, it is computationally demanding to identify biologically relevant states in a cell- and disease-specific context. In this work, we developed an efficient computational framework that converts molecular interaction maps into Boolean models using the CaSQ tool. Next, we used a newly developed version of the BMA tool deployed to a high-performance computing cluster to identify the models’ steady states. The identified attractors are then validated using gene expression data sets and prior knowledge. We successfully applied our framework to generate and calibrate the M1 and M2 macrophage Boolean models for rheumatoid arthritis. Using KO simulations, we identified NFkB, JAK1/JAK2, and ERK1/Notch1 as potential targets that could selectively suppress proinflammatory macrophages and GSK3B as a promising target that could promote anti-inflammatory macrophages in rheumatoid arthritis
Recommended from our members
Mutations observed in somatic evolution reveal underlying gene mechanisms.
Acknowledgements: This work was supported by grants from the Wellcome Trust to the Wellcome Sanger Institute (098051 and 296194) and Cancer Research UK Programme Grants to P.H.J. (C609/A17257 and C609/A27326). B.A.H. and M.W.J.H. are supported by the Medical Research Council (Grant-in-Aid to the MRC Cancer unit grant number MC_UU_12022/9 and NIRG to B.A.H. grant number MR/S000216/1). M.W.J.H. acknowledges support from the Harrison Watson Fund at Clare College, Cambridge. B.A.H. acknowledges support from the Royal Society (grant no. UF130039).Highly sensitive DNA sequencing techniques have allowed the discovery of large numbers of somatic mutations in normal tissues. Some mutations confer a competitive advantage over wild-type cells, generating expanding clones that spread through the tissue. Competition between mutant clones leads to selection. This process can be considered a large scale, in vivo screen for mutations increasing cell fitness. It follows that somatic missense mutations may offer new insights into the relationship between protein structure, function and cell fitness. We present a flexible statistical method for exploring the selection of structural features in data sets of somatic mutants. We show how this approach can evidence selection of specific structural features in key drivers in aged tissues. Finally, we show how drivers may be classified as fitness-enhancing and fitness-suppressing through different patterns of mutation enrichment. This method offers a route to understanding the mechanism of protein function through in vivo mutant selection
Mutations observed in somatic evolution reveal underlying gene mechanisms
Abstract Highly sensitive DNA sequencing techniques have allowed the discovery of large numbers of somatic mutations in normal tissues. Some mutations confer a competitive advantage over wild-type cells, generating expanding clones that spread through the tissue. Competition between mutant clones leads to selection. This process can be considered a large scale, in vivo screen for mutations increasing cell fitness. It follows that somatic missense mutations may offer new insights into the relationship between protein structure, function and cell fitness. We present a flexible statistical method for exploring the selection of structural features in data sets of somatic mutants. We show how this approach can evidence selection of specific structural features in key drivers in aged tissues. Finally, we show how drivers may be classified as fitness-enhancing and fitness-suppressing through different patterns of mutation enrichment. This method offers a route to understanding the mechanism of protein function through in vivo mutant selection