12 research outputs found

    The spread of resistance to acetolactate synthase inhibiting herbicides in a wind borne, self-pollinated weed species, Lactuca serriola L.

    No full text
    The original publication can be found at www.springerlink.comResistance to ALS-inhibiting herbicides in Lactuca serriola first appeared in the northern Yorke Peninsula in South Australia in 1994, with resistance soon observed at a number of additional sites. The rapid appearance of resistance at many sites could be attributed to a number of independent selection events or to movement of resistant seed from the original field. ISSRs were used to genotype plants collected in 1999 and 2004 from roadsides or fields in an attempt to determine the importance of these two factors in the spread of herbicide resistance in L. serriola. In 1999 and 2004, chlorsulfuron-resistant L. serriola plants were found in both fields and roadsides with resistant plants being more frequent in fields than roadsides and more frequent in 2004 than in 1999. Genetic relationships generated using UPGMA analysis indicated the presence of more than one genotype within the herbicide resistant populations sampled for both years and suggested independent selection as well as movement of resistant seed had occurred. DNA extracted from samples collected in 1999 was used to sequence a highly conserved region of the ALS gene that coded for a single amino acid modification within the gene. Four different mutations were identified within the resistant samples and these mutations tended to cluster on a geographical basis. Together these data provide evidence for both multiple independent evolutionary events and for the potential movement of individual genotypes as far as 43 km in the region.Y-Q. Lu, J. Baker and C. Presto

    Fitness costs associated with evolved herbicide resistance alleles in plants

    No full text
    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution
    corecore