188 research outputs found

    Precision medicine in Parkinson’s disease: emerging treatments for genetic Parkinson’s disease

    Get PDF
    In recent years, numerous clinical trials for disease modification in Parkinson’s disease (PD) have failed, possibly because of a “one-size-fits all” approach. Alternatively, a precision medicine approach, which customises treatments based on patients’ individual genotype, may help reach disease modification. Here, we review clinical trials that target genetic forms of PD, i.e., GBA-associated and LRRK2-associated PD. In summary, six ongoing studies which explicitely recruit GBA-PD patients, and two studies which recruit LRRK2-PD patients, were identified. Available data on mechanisms of action, study design, and challenges of therapeutic trials are discussed. Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting more than 6 million people worldwide [1]. Numerous drugs for the treatment of PD are avilable on the market. While drugs targeting the dopaminergic pathway treat motor symptoms, there is no evidence that they modify disease progression. This “one-size-fits all” approach may very well explain why clinical trials for disease modification in PD have failed. Treatments that target the underlying pathophysiology are required. Since the pathophysiology of PD may be different in different patients, studies should be designed that assess PD treatment on a more individual basis. Therefore, a precision medicine approach in PD is very timely

    Emerging Targeted Therapeutics for Genetic Subtypes of Parkinsonism

    Get PDF
    In recent years, a precision medicine approach, which customizes medical treatments based on patients' individual profiles and incorporates variability in genes, the environment, and lifestyle, has transformed medical care in numerous medical fields, most notably oncology. Applying a similar approach to Parkinson's disease (PD) may promote the development of disease-modifying agents that could help slow progression or possibly even avert disease development in a subset of at-risk individuals. The urgent need for such trials partially stems from the negative results of clinical trials where interventions treat all PD patients as a single homogenous group. Here, we review the current obstacles towards the development of precision interventions in PD. We also review and discuss the clinical trials that target genetic forms of PD, i.e., GBA-associated and LRRK2-associated PD

    Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program

    Get PDF
    Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset

    Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: A lipidomic analysis

    Get PDF
    Parkinson’s disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the ‘Spot’ study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/ÎŒl versus 1.337±0.040 pmol/ÎŒl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk

    Defining the Riddle in Order to Solve It:There Is More Than One “Parkinson's Disease”

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Background: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. Objective: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. Conclusion: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.T.F.O. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC (2067/1-390729940). V.B. is supported by the Stichting Parkinson Fonds (the Netherlands). M.G.S. is supported by the Bhargava Family Research Chair in Neurodegeneration, the Department of Medicine at The Ottawa Hospital and its Foundation. B.M. is supported by The Michael J. Fox Foundation for PD Research, DFG, EU (Horizon 2020), the National Parkinson's Foundation, Parkinson Fonds Deutschland, and the Deutsche Parkinson Vereinigung. L.S. and T.F.O. were supported by IMPRiND and EU (Horizon 2020). H.S. was supported by the Advanced ERC program, The Michael J. Fox foundation, and the Israel Science Fund. We thank Dr. J.P. Vonsattel, Columbia University, for providing the images for Figure 2. Open Access funding enabled and organized by Projekt DEAL.info:eu-repo/semantics/publishedVersio

    Polygenic Parkinson's Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease

    Get PDF
    Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. Objective: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. Methods: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. Results: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). Conclusions: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA

    Genetic markers of Restless Legs Syndrome in Parkinson disease

    Full text link
    INTRODUCTION: Several studies proposed that Restless Legs Syndrome (RLS) and Parkinson disease (PD) may be clinically and/or etiologically related. To examine this hypothesis, we aimed to determine whether the known RLS genetic markers may be associated with PD risk, as well as with PD subtype. METHODS: Two case-control cohorts from Tel-Aviv and New-York, including 1133 PD patients and 867 controls were genotyped for four RLS-related SNPs in the genes MEIS1, BTBD9, PTPRD and MAP2K5/SKOR1. The association between genotype, PD risk and phenotype was tested using multivariate regression models. RESULTS: None of the tested SNPs was significantly associated with PD risk, neither in any individual cohort nor in the combined analysis after correction for multiple comparisons. The MAP2K5/SKOR1 marker rs12593813 was associated with higher frequency of tremor in the Tel-Aviv cohort (61.0% vs. 46.5%, p = 0.001, dominant model). However, the risk allele for tremor in this gene has been associated with reduced RLS risk. Moreover, this association did not replicate in Tremor-dominant PD patients from New-York. CONCLUSION: RLS genetic risk markers are not associated with increased PD risk or subtype in the current study. Together with previous genetic, neuropathological and epidemiologic studies, our results further strengthen the notion that RLS and PD are likely to be distinct entities

    Gene-Wise Association of Variants in Four Lysosomal Storage Disorder Genes in Neuropathologically Confirmed Lewy Body Disease

    Get PDF
    Objective Variants in GBA are associated with Lewy Body (LB) pathology. We investigated whether variants in other lysosomal storage disorder (LSD) genes also contribute to disease pathogenesis. Methods We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD) changes (n = 59), AD without significant LB pathology (n = 71), Alzheimer disease and lewy body variant (ADLBV) (n = 68), and control brains without LB or AD neuropathology (n = 33). Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by ‘gene wise’ genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64) that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67) which included LBD (n = 34), ADLBV (n = 3), AD (n = 4), PD (n = 9) and control brains (n = 17), comparing GBA mutation carriers to non-carriers. Results In a ‘gene-wise’ analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03–4.14 x10-5). Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (p<0.001). A significant increase and accumulation of several species for the lipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01). Interpretation Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies

    Analysis of common and rare VPS13C variants in late-onset Parkinson disease

    Get PDF
    Objective We aimed to study the role of coding VPS13C variants in a large cohort of patients with lateonset Parkinson disease (PD) (LOPD). Methods VPS13C and its untranslated regions were sequenced using targeted next-generation sequencing in 1,567 patients with PD and 1,667 controls from 3 cohorts. Association tests of rare potential homozygous and compound heterozygous variants and burden tests for rare heterozygous variants were performed. Common variants were analyzed using logistic regression adjusted for age and sex in each of the cohorts, followed by a meta-analysis. Results No biallelic carriers of rare VPS13C variants were found among patients, and 2 carriers of compound heterozygous variants were found in 2 controls. There was no statistically significant burden of rare (minor allele frequency [MAF] <1%) or very rare (MAF <0.1%) coding VPS13C variants in PD. A VPS13C haplotype including the p.R153H-p.I398I-p.I1132V-p.Q2376Q variants was nominally associated with a reduced risk for PD (meta-analysis of the tagging SNP p.I1132V [odds ratio = 0.48, 95% confidence interval = 0.28–0.82, p = 0.0052]). This haplotype was not in linkage disequilibrium with the known genome-wide association study top hit. Conclusions Our results do not support a role for rare heterozygous or biallelic VPS13C variants in LOPD. Additional genetic replication and functional studies are needed to examine the role of the haplotype identified here associated with reduced risk for PD

    GBA mutations are associated with Rapid eye movement sleep behavior disorder

    Get PDF
    Rapid eye movement sleep behavior disorder and GBA mutations are both associated with Parkinson’s disease. The GBA gene was sequenced in idiopathic rapid eye movement sleep behavior disorder patients (n = 265), and compared to controls (n = 2240). Rapid eye movement sleep behavior disorder questionnaire was performed in an independent Parkinson’s disease cohort (n = 120). GBA mutations carriers had an OR of 6.24 (10.2% in patients vs. 1.8% in controls, P < 0.0001) for rapid eye movement sleep behavior disorder, and among Parkinson’s disease patients, the OR for mutation carriers to have probable rapid eye movement sleep behavior disorder was 3.13 (P = 0.039). These results demonstrate that rapid eye movement sleep behavior disorder is associated with GBA mutations, and that combining genetic and prodromal data may assist in identifying individuals susceptible to Parkinson’s disease
    • 

    corecore