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ABSTRACT: Background: More than 200 years after
James Parkinsondescribed a clinical syndrome based on
his astute observations, Parkinson’s disease (PD) has
evolved into a complex entity, akin to the heterogeneity of

other complex human syndromes of the central nervous
system such as dementia, motor neuron disease, multiple
sclerosis, and epilepsy. Clinicians, pathologists, and basic
science researchers evolved arrange of concepts
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andcriteria for the clinical, genetic, mechanistic, and neu-
ropathological characterization of what, in their best judg-
ment, constitutes PD. However, these specialists have
generated and used criteria that are not necessarily
aligned between their different operational definitions,
which may hinder progress in solving the riddle of the dis-
tinct forms of PD and ultimately how to treat them.
Objective: This task force has identified current in con-
sistencies between the definitions of PD and its diverse
variants in different domains: clinical criteria, neuropatho-
logical classification, genetic subtyping, biomarker signa-
tures, and mechanisms of disease. This initial effort for
“defining the riddle” will lay the foundation for future
attempts to better define the range of PD and its vari-
ants, as has been done and implemented for other het-
erogeneous neurological syndromes, such as stroke and

peripheral neuropathy. We strongly advocate for a more
systematic and evidence-based integration of our diverse
disciplines by looking at well-defined variants of the syn-
drome of PD.
Conclusion: Accuracy in defining endophenotypes of
“typical PD” across these different but interrelated disci-
plines will enable better definition of variants and their
stratification in therapeutic trials, a prerequisite for break-
throughs in the era of precision medicine. © 2023 The
Authors. Movement Disorders published by Wiley Period-
icals LLC on behalf of International Parkinson and Move-
ment Disorder Society.

Key Words: Parkinson’s disease; neurodegeneration;
diagnostic criteria; neuropathology; biological definition;
biomarker; Lewy body

Introduction

Our understanding of Parkinson’s disease (PD) has
evolved tremendously over the past 200 years, when it
was initially described by James Parkinson, based on clini-
cal observations.1 Although the disease was initially cat-
alogued as a movement/motor disorder, it is now widely
accepted that its clinical manifestations extend far beyond
the characteristic motor symptoms that are still the main
required criteria for the clinical diagnosis of PD.2 Progress
in neuropathology and the advent of PD genetics3 have
greatly influenced our understanding of the biological
mechanisms involved and have enabled us to interrogate
the molecular underpinnings of the disease. However,
despite great advances in the field, several traditional con-
cepts continue to resist and be propagated, thereby often
causing confusion and leading to the use of terminology
that still does not distinguish idiopathic from genetic
forms of PD. Ideally, these concepts should reflect our
current best level of understanding of all the mechanisms
that underlie the disease, thereby avoiding misconceptions
and biases that may impede progress and distract the
research community from questions that still need to be
solved. For example, should we update the criteria defin-
ing PD? Should we continue to use motor symptoms as
the basis for diagnosis? How do we best distinguish PD
from other forms of parkinsonism? Should we continue
to use the word “idiopathic” in forms of PD where genetic
causes have been identified? How should we redefine and
classify PD integrating the clinical features with the
already-known underlying biology?
Here, we highlight several unresolved questions in

the field with the aim of enhancing the dialogue
between basic scientists and clinicians to revise and
update definitions and terminology in the field of PD
based on our best current knowledge.

Under the auspices of the International Parkinson
and Movement Disorder Society (MDS), we assembled
a task force named Biological Definition of Parkinson’s
Disease. The major objectives of this task force were
(1) to define typical PD on clinical grounds within a
more precise definition of motor and nonmotor symp-
toms, (2) to delineate genomic sequence-based elements
associated with complex versus monogenic forms of
PD, (3) to update the neuropathological hallmark
criteria of distinct variants that meet the clinical diagno-
sis of PD, and (4) to summarize the essential features of
PD variants that should guide the development of use-
ful laboratory models. Ultimately, our goal is to estab-
lish a novel basis for the discovery of (1) pathogenetic
cause, (2) biomarkers of disease state, (3) markers of
disease progression, and (4) targets for therapeutic
interventions that best match mechanisms of disease in
each patient.

Basic Concepts

PD, as presently defined, represents the intersection of
several different biological processes that, at a certain
point, lead to axonal retraction and nigral degeneration
of dopamine-producing neurons.4-6 Although nigral
degeneration alone is not the defining feature of PD, it
is the basis for the efficacy of dopamine replacement
therapy in these individuals.7 The magnitude of symp-
tom relief (even if temporary) by dopaminergic treat-
ments for several motoric features of the disease is so
overwhelming and unique for a neurodegenerative dis-
ease that it has introduced strong biases in our
“nigrocentric” view of PD.
Currently, PD patients see a physician because mainly

of their motor symptoms, receive a diagnosis based on
clinical criteria (eg, UK Brain Bank Criteria8), receive
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medication, join PD support groups, look up available
disease information, and begin to understand the impli-
cations and likely treatment options as well as side
effects from symptomatic therapies. Importantly, most
patients meeting these criteria already have Lewy bod-
ies (LBs) in their brains and do not display a simple
Mendelian disease. Even within rare, Mendelian forms
of the disease, most brains from patients will carry LBs,
even though they may present with more variable phe-
notypes of the disease (Table 1).43

Added to this basic definition, there are many smaller
groups of PD patients who present and evolve in a dif-
ferent manner, and we need to understand both the var-
iability in the patients with LBs and the paths of those
who do not display LB pathology (LBP). These smaller
groups are important because they may provide patho-
mechanistic information on the neurodegeneration
process and because they probably involve different
molecular mechanisms. Therefore, these individuals
should be involved in some more restricted clinical
studies and may eventually be treated in different ways.
Therefore, it is important that we are aware of these
differences and be prepared to stratify the patients with
the overall rubric. Additionally, we need to acknowl-
edge that there are many individuals with dementia
who have LBP but have a clinical phenotype that does
not include parkinsonism. These individuals may also
respond differently to dopamine replacement therapy
but also to other pharmacological agents such as anti-
cholinergics, monoamine oxidase B (MAO-B) inhibitors,
Catechol-O-methyl transferase (COMT)-inhibitors, and
glutamate/N-methyl-D-aspartate antagonists.
Thus, we are in a fluid situation where there is vari-

ability in terms of clinical phenotype, genetic markers,
and pathological features (Fig. 1; Table 1). Any attempt
to categorize the disease and define pathogenesis must
always be considered a work in progress, which will
need continuous updates, especially with regard to con-
stant technological advances that improve our ability to
detect relevant biomarkers.
Here, we present various operational definitions of

PD, according to different perspectives, to illustrate the
complexity of the issue and to promote a scientific dis-
cussion that should lead to a unified and comprehensive
definition of the disease.
For the task force, it was advisable that an update in

the definition of PD did not change the name of the dis-
ease, to avoid adding confusion in an already-diverse
field.

Clinicopathological Definition of PD

The most frequently written clinicopathological defi-
nition of PD, widely accepted by the clinical and scien-
tific community, describes this clinical entity as a slowly

progressive neurological disorder with parkinsonism
without features suggestive of an alternative diagnosis,
responding to dopaminergic treatment, and associated
with loss of substantia nigra neurons and the presence
of LBs in some of the remaining neurons.7 Although
this definition is easy to explain and widely used, its
application in clinical practice and research allowed for
PD to be a heterogeneous neurologic disorder that var-
ies widely in clinical manifestations and progression.

Definition of Idiopathic PD

In general, when referring to “typical” PD, the word
“idiopathic” has been used to differentiate it from other
forms of parkinsonism with different phenomenology
and, usually, worse prognosis (atypical parkinsonian
syndromes) or with different causes (secondary parkin-
sonism). Although, in medicine, the term “idiopathic”
refers to any disease with an unknown cause, the
monogenic forms of PD that account for up to 5% of
the sporadic cases are still included in the idiopathic PD
(iPD) forms.44 Therefore, this is clearly a topic that
needs further consideration.

Other Terms Applied to iPD

Other commonly used terms for the clinical entity PD
include juvenile-onset PD, which refers to patients with
an age of onset before 21 years, and young-onset
PD/early-onset PD (EOPD) when the age of onset is
between 21 and 50 years.45-47 When we analyze the
pathophysiological basis for this classification, we real-
ize that the proposed cutoff age to separate between
juvenile- and early onset is based on a higher risk of
familial parkinsonism in patients with onset before
21 years and the absence of known hereditary factors
identified over the age of 21.45 However, these terms
were introduced in 1987, whereas the first gene muta-
tion responsible for PD was identified only in 1997.3

The term “EOPD” has also been used to describe the
disease with different cutoff ages from 40 to
60 years.47,48 In fact, recognizing this is an area that
deserves additional attention (the MDS established a
task force dedicated to this topic) to better define
EOPD.47,49

Definition of Atypical Parkinsonism

Although the term “parkinsonism” is widely used,
there is no established definition. It usually refers to a
clinical syndrome characterized by bradykinesia and
two of three features: a 4- to 6-Hz resting tremor, mus-
cular rigidity, and/or postural instability.50 PD is the
most common neurodegenerative cause of parkinson-
ism. Other neurodegenerative conditions associated
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with parkinsonism are grouped together under the term
“atypical parkinsonism” (eg, multiple system atrophy
[type P], progressive supranuclear palsy [PSP], and cor-
ticobasal degeneration). Typically, they do not respond
as well to dopaminergic treatments, develop less dyski-
nesia after chronic levodopa therapy, and have a more

rapid progression and thus a worse prognosis (ie, short-
ened life span) when compared to most cases with typi-
cal PD.51 The motor syndrome can also manifest as a
result of various vascular, drug-related, infectious,
toxic, structural, or other causes that lead to “second-
ary parkinsonism.”

TABLE 1 Neuropathological characteristics of selected genetic forms of PD

Gene Epidemiology Parkinsonian endophenotype Neuropathology

LRRK2 G2019S (4% of familial and 1% of
sporadic PD, most common in
Ashkenazi Jewish and North African
Berber populations)9-12

G2019S phenotype is similar to
idiopathic PD with a slower rate of
motor decline13,14

Lewy body pathology is found in
about 50% of LRRK2-PD
brains15-17

R1441G (found in up to 46% of
autosomal dominant forms of PD in
Basque populations)18

G2385R and R1628P (variants found in
10% and 3% of PD patients in Asian
populations, respectively)19,20

SNCA 0.2% of sporadic and 1%–2% of familial
PD cases13

Dose–effect seen with duplications and
triplications: duplication phenotype is
more similar to sporadic PD with
earlier presentation and may feature
depression; SNCA triplication carriers
and point mutation carriers are more
likely to be associated with earlier
onset, rapid progression, more
pronounced dysautonomia and
dementia21

More diffuse and extensive burden of
aSyn than idiopathic PD;
depositions in brainstem and
throughout cerebrum13

PRKN Most common cause of autosomal
recessive EOPD22

EOPD resembles sporadic PD; levodopa
responsive with notable features,
including dystonia, slow progression,
hyperreflexia, frequent dyskinesias
and paucity of cognitive
impairment23

Lewy bodies are found in
approximately one-third of PRKN-
linked PD cases, and neuronal loss
is most prominent in the ventral
substantia nigra24,25

PINK1 Second most frequent cause of
autosomal recessive EOPD26,27

Slowly progressive, levodopa-responsive
EOPD with symptoms developing
before age 40 years27,28

Few existing PINK1 neuropathology
reports suggest its deficiency causes
substantia nigra cell loss but with the
development of Lewy bodies29,30

DJ-1 Third most frequent cause of autosomal
recessive EOPD; 0.4%–1% of AR PD
cases26

Motor phenotype similar to PRKN and
PINK1-linked PD with a notable
prevalence of dystonia (46% of cases)
and dyskinesias (23% of cases)26

Few DJ-1 neuropathological studies
exist; aSyn and Lewy body
formation is seen consistently31,32

VPS35 0.4% of PD cases33 Similar to idiopathic PD with earlier
onset at age 50–60 years33,34

Not available yet

GBA1 Variants occur in 2%–10% of PD
subjects among non-Ashkenazi Jews;
as high as 31% in Ashkenazi PD
patients35-38

Motor symptoms progress more
quickly, and nonmotor features such
as autonomic dysfunction, cognitive
impairment, hyposmia and REM
sleep behavior disorder are more
common than in typical PD39-41

Widespread Lewy body pathology is
seen in virtually all cases of
GBA1-linked PD24

Source: Adapted from Wise and Alcalay.42

Abbreviations: AR, autosomal recessive; aSyn, α-synuclein; EOPD, early-onset PD; PD, Parkinson’s disease; REM, rapid eye movement.
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Criteria for PD

The proposed clinical criteria for the diagnosis of PD
were mainly formulated to facilitate the differential
diagnosis of PD from other parkinsonian syndromes.
Among the most frequently applied criteria are the
Gelb’s criteria52 and the UK Parkinson’s Disease Soci-
ety Brain Bank Diagnostic (UK Brain Bank Criteria).50

Although these criteria have been used as diagnostic
tools in clinical practice, they were mainly developed
for research purposes.
The proposed Gelb’s clinical diagnosis criteria were

based on a review of the literature and propose three
levels of diagnostic confidence: definite, probable, and
possible. The diagnoses of definitive PD required histo-
pathologic confirmation. However, it was made explicit
in the same publication that there were no universally
accepted histopathologic criteria for the diagnosis of
PD, and the proposed criteria just summarized what
had been used in the limited number of available clini-
copathological series.52

The UK Brain Bank Criteria50 were proposed based
on a clinicopathological correlation study of histopath-
ological findings from 100 patients diagnosed with iPD.
Its application had a specificity of 98.6% and a sensitiv-
ity of 91.1%, and up to 10% of the diagnoses made in
living patients were reclassified at postmortem examina-
tions. Its use in earlier stages had even more severe limi-
tations, as the criteria itself included as supportive

factors, aspects that are dependent on the progression
of motor symptoms and response to levodopa.53,54

A task force of MDS proposed new Clinical Diagnos-
tic Criteria for PD in 2015.2 These criteria kept the core
of the UK Brain Bank Criteria and incorporated and
attributed more relevance to some nonmotor features
of the disease. Although they were mainly developed
for use in clinical research, they can also be applied in
clinical practice. The criteria defined two levels of diag-
nostic certainty, (1) clinically established PD and
(2) probable PD, and proposed a diagnostic approach
based on three categories of diagnostic features: abso-
lute exclusion criteria (which rule out PD), red flags
(which must be counterbalanced by additional support-
ive criteria to allow diagnosis of PD), and supportive
criteria (positive features that increase confidence in PD
diagnosis). A retrospective application of these new
criteria in a large cohort of PD patients suggested that
they enable a slightly better separation of patients with
atypical parkinsonism or secondary parkinsonism when
compared with what is achieved using the UK Brain
Bank Criteria.55

Criteria for Prodromal PD

Prodromal disease has been defined as the disease
stage where early symptoms or signs of neu-
rodegeneration are present, but clinical diagnosis based

FIG.. 1. The biological definition of PD: where is Parkinson’s disease? The schematic represents the various layers that form the biological basis for
defining PD. [Color figure can be viewed at wileyonlinelibrary.com]
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on motor parkinsonism is not yet possible. Anticipating
the need to better define and classify the “premotor”
and early stages of PD due to the clinical development
of disease-modifying therapies, the MDS convened a
task force to develop research criteria for prodromal
PD. These criteria were developed based on the likeli-
hood of prodromal disease being present and proposed
a new approach for the assessment of the individual
probability of prodromal PD. They include motor and
nonmotor clinical symptoms, clinical signs, and ancil-
lary diagnostic tests.56,57 These criteria recognize as
high-risk markers for prodromal PD the following fac-
tors: a sibling with PD with age onset below 50 years,
substantia nigra hyper-echogenicity, probable rapid eye
movement sleep behavior disorder (RBD) as identified
by a polysomnogram, abnormal dopaminergic positron
emission tomography/single-photon emission computed
tomography (PET/SPECT), possible subthreshold par-
kinsonism (ie, the presence of one clinical sign, eg,
bradykinesia), and olfactory loss.56,57

The formal inclusion of the substantia nigra hyper-
echogenicity and dopamine transporter (DAT) neuro-
imaging as risk markers for PD constitutes the first
association between clinical criteria and a potential
physiopathological marker.
Recent results showed that the proposed criteria have

a high specificity in identifying prodromal PD (mainly
because of the high specificity of RBD as an included
nonmotor symptom) but that the identified patients will
meet the clinical criteria for PD only at later and uncer-
tain time points.58,59 Notwithstanding, we posit that, in
the future, the boundaries of prodromal PD will evolve
if we include nonmotor problems as “cardinal signs,”
making it possible to diagnose PD before the onset of
the typical motor features.

PD Subtypes

Many PD subtype classifications have been proposed
based on predominant clinical features and data-driven
analysis. However, there is still no consensus on the
most useful PD subtype classification in clinical practice
and research and also on the one that better reflects the
different trajectories in physiopathological mechanisms
of the disease.
The oldest concept has been defined based on the pre-

dominant motor signs at an early stage and has defined
the tremor-dominant and akinetic-rigid dominant clini-
cal subtypes.60 At later stages, another subtype has
been proposed with relevant axial signs, including pos-
tural instability and gait disturbance (postural instabil-
ity gait disorders [PIGD]). The PIGD subtype is also
characterized by more severe disease manifestations at
diagnosis and greater cognitive progression, more fre-
quent hallucinations, and psychosis.61

In a prospective cohort study from Montreal, three sub-
types were defined, namely motor/slow progression, dif-
fuse/malignant, and intermediate. Patients with the
diffuse/malignant phenotype were more likely to have
mild cognitive impairment, orthostatic hypotension, and
RBD at baseline. At follow-up, they showed a more rapid
progression of cognitive decline, the presence of other
nonmotor symptoms, more severe motor symptoms and
signs, and a worse global composite outcome.62

In another study, using data from the Parkinson’s Pro-
gression Markers Initiative (PPMI), patients were classi-
fied again as having a “mild motor-predominant,”
“diffuse malignant,” or an “intermediate” form. A hierar-
chical cluster analysis was performed using as key classi-
fiers a motor summary score and three nonmotor features
(cognitive impairment, RBD, and dysautonomia). Patients
with the diffuse malignant subtype progressed faster in
overall prognosis, with greater decline in cognition and in
dopamine functional neuroimaging after an average of
2.7 years. Patients with diffuse malignant PD also had
more atrophy in the brain network and the lowest level of
cerebrospinal fluid (CSF) amyloid-β and amyloid-β/total-
tau ratio (AD-like CSF profile).63 In another study using
PPMI data, five distinct motor subtypes were identified
based on the motor assessment items: tremor dominant,
axial dominant, appendicular dominant, rigidity domi-
nant, and postural and instability gait disorder domi-
nant.64 Interestingly, a study that analyzed all published
studies of data-driven PD subtype classification failed to
demonstrate reproducibility in a cohort created for clinical
research purposes—the Longitudinal and Biomarker
Study in PD systems. These results question the validity
and widespread use of these data-driven PD subtype clas-
sification systems.65 An alternative option would be to
shift to a semi-mechanistic model of PD based on progres-
sion of functional disability rather than individual clinical
scales, defining the respective pathogenetic/genetic finger-
prints in each cohort and determining discrete strategies
to tackle the underlying pathology.

Neuropathological Definition of PD—“It Is
Complicated”

The main morphological correlate of the clinical
Parkinson’s syndrome is the loss of nigral dopaminergic
neurons that project to the basal ganglia or their pro-
found dysfunction (such as in the case of neuroleptic
exposure or normal-pressure hydrocephalus). The ven-
trolateral neurons are particularly vulnerable, whereas
the dorsal and medial neurons are more resistant.16 In
PD, this neuronal loss is associated with LBP, but there
are numerous other diseases that can lead to nigral neu-
ronal cell loss with parkinsonism.66

PD is part of the spectrum of LB disease (LBD), which
also includes PD dementia (PDD) and dementia with LB
(DLB). Neuropathologically, these diseases are all
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characterized by LBP, which refers to the presence of
α-synuclein (aSyn) aggregates in neuronal cell bodies and
neuronal processes, termed LB and Lewy neurites,
respectively. According to the Braak stages for LBP pro-
gression in PD,67 LBP initially occurs in the dorsal motor
nucleus of the vagal nerve (medulla oblongata) and ante-
rior olfactory nucleus (olfactory bulb), followed by locus
coeruleus (pons) and substantia nigra, where it leads to
severe cell loss and parkinsonism. In later stages, LBP
may spread to limbic and neocortical areas and be asso-
ciated with clinical dementia. However, recent evidence
indicates that aSyn aggregates can be observed in differ-
ent peripheral tissues already during diagnosis, challeng-
ing the concept of spreading as initially hypothesized by
Braak for PD.68,69 The distinction between DLB and
PDD is based on clinical findings: in PDD the onset of
parkinsonism should precede dementia by at least 1 year,
and in DLB cognitive impairment manifests before, dur-
ing, or within 1 year of the onset of parkinsonism,
suggesting that the Braak stages for LBP progression are
not valid for DLB, where severe LBP may be initially
seen in limbic and neocortical areas.70 In fact, the Braak
stages were proposed based on the study of PD and
PDD patients, not DLB.
PD and DLB are the most common causes of parkin-

sonism (>50%).66 Other diseases associated with par-
kinsonism, for example, multiple system atrophy
(MSA), predominantly display aSyn aggregates in the
form of glial inclusions (Papp Lantos bodies). aSyn
inclusions are often also present in tauopathies (PSP,
corticobasal degeneration, Guam Parkinson’s dementia
complex, and chronic traumatic encephalopathy) and
in TAR DNA-binding protein (TDP)-43 proteinopathies
(frontotemporal lobar degeneration TDP and Perry
syndrome).
In addition, some genetic diseases show nigral neuro-

nal cell loss and parkinsonism without specific protein
accumulation (associated with mutations in PINK1,
PRKN, POLG, and some forms of LRRK2). As
explained earlier, parkinsonism may also be associated
with nondegenerative factors such as vascular (vascular
parkinsonism), toxic (manganese poisoning), drug
induced (antipsychotic medications), and infectious
(post-encephalitic parkinsonism or even SARS-
CoV2).66,71,72

Although LBP is the hallmark pathology of LBD, other
age-associated neuropathological changes may be seen in
addition, and their prevalence in LBD increases with
advancing age, reflecting respective findings in the general
population.73-75 Not surprisingly, hyperphosphorylated
tau (eg, neurofibrillary tangles) and amyloid-β (eg, amy-
loid plaques) pathology, which are the hallmark patholo-
gies of Alzheimer’s disease (AD), are particularly frequent
in LBD, with up to 50% showing severe additional AD
pathology76,77 and over 20% showing limbic-
predominant age-related TDP-43 encephalopathy.76,78

Although these pathologies are more frequent and more
severe in DLB than in PD/PDD,79 they have—together
with cerebrovascular disease—an impact on clinical symp-
toms and biomarker profiles, thereby providing a neuro-
pathological explanation for the heterogeneity of the PD
phenotype.
It is important to highlight that the term “Parkinson’s

disease” is sometimes broadly used to refer to parkinson-
ism as such, irrespective of the underlying pathology (eg,
“genetic PD”). However, the current neuropathological
definition of PD refers to parkinsonism with nigral neu-
ronal loss and LBP, whereas parkinsonism in general
may have a plethora of different causes and associated
pathologies.

Genetic Forms of PD
The adoption of unbiased, genome-wide association

approaches (GWAS [genome-wide association study])
yielded, so far, about 90 genomic loci containing com-
mon variability that influences the risk of developing
PD.80 These variants are present in the population
but are of small effect size (odds ratios typically
�1.05–1.3). Whereas each variant on its own contrib-
utes little to PD risk, algorithms considering multiple
risk variants in a calculated polygenic risk score (PRS)
can be highly informative. In particular, PRS has thus
far been associated with PD risk, age of onset, and rate
of progression (in motor function and cognition).80-82

Furthermore, even among high-effect-size variants (also
called Mendelian forms of PD, see later), PRS is associ-
ated with disease status, that is, penetrance, in
LRRK283 and in the expressivity of Gaucher disease
(that is caused by biallelic variants at the GBA1
locus).84

On the contrary, unbiased genome-wide studies in
rare, large families with multiple cases of PD (mostly
clinically diagnosed) yielded a number of genes, which,
if mutated, can cause monogenic (Mendelian) forms of
disease (for recent reviews see Puschmann85). Although
these forms are usually very rare, their identification
has provided novel and important insights into molecu-
lar mechanisms and pathways implicated in the neuro-
degenerative process, and they have informed and
fueled the current waves of biological studies, which, in
turn, might translate into new targets for disease
modification.86

Mendelian Forms of PD
From the perspective of “a biological definition of

PD,” the Mendelian forms challenge the validity of the
current clinical and pathological definitions of this
disease.
First, in some families with mutations in one of the

most established PD-causing genes, such as SNCA or
LRRK2, some individuals who carry the disease-
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causing variant display clinical phenotypes that differ
from those present in “classical PD” (eg, a dementing
illness resembling LBD, or frontotemporal dementia
[FTD], or atypical parkinsonism, resembling PSP).87,88

Mutations in the SNCA gene encoding for α-syn repre-
sent the prototypical forms of genetic PD. These are
autosomal dominant forms and include point mutations
(eg, A30P, E46K, G51D, and A53T/E), as well as gene
multiplications—duplications or triplications. Apart
from the p.A53T mutation, which is not uncommon in
subjects of Greek descent, the other point mutations are
quite rare, and it is thus difficult to have a comprehen-
sive view of their phenotypic spectrum. Patients with
the p.A53T mutation typically present with a classical
motor onset of PD, although cases with a DLB-like or
FTD-like presentation have been reported.87,89,90 This
generally presents a more severe form compared to iPD,
with earlier onset and more rapid progression and with
prominent nonmotor features of neuropsychiatric dis-
turbances, dysautonomia, and dementia.89-91 SNCA
triplication cases are also quite severe, perhaps even
more so than p.A53T cases,92 whereas duplication
cases have a more variable presentation and evolution.
Neuropathologically, genetic SNCA cases represent

typical widespread synucleinopathies, with added fea-
tures that may include predominant affectation of the
neurites, oligodendroglial aSyn deposition, and
enhanced tau pathology (Table 1). Looking at the big
picture, these cases, apart from some exceptions, do not
provide a conceptual problem. They are, from a clinical
and neuropathological perspective, typical syn-
ucleinopathies and represent a very fertile ground of
research to understand how a genetic defect in the
SNCA gene leads to PD.
Second, mutations in LRRK2 are the most common

cause of a monogenic form of clinically typical PD
although the proportion of asymptomatic carriers devel-
oping symptoms may be lower than initially predicted.93

Yet, strikingly, LBs are not detectable in a substantial
fraction of patients with LRRK2 mutations analyzed
postmortem, and this pattern has been confirmed in
patients with several disease-causing mutations in this
gene (Table 1).15,94 In some of these LRRK2 patients,
tau-positive pathology is found.95 In others, only nigral
neuronal loss is present in the absence of distinctive pro-
tein aggregation.96,97 Obviously, this broad pleomor-
phism challenges the current pathological definition of
PD. Taking LRRK2 as a model for iPD would imply
that LBs are not an invariable nor a necessary pathologi-
cal feature associated with cell death and suggest that
some of the patients with late-onset PD may not
have LBP.
Third, LBs are detectable in an expanding list of

monogenic neurodegenerative diseases, which are clini-
cally far from the current clinical definition of PD, such
as juvenile onset, rapidly progressive parkinsonism,

dystonia parkinsonism, or parkinsonism dementia,
sometimes also associated with severe brain iron accu-
mulation, such as patients with PLA2G6-associated
neurodegeneration,98 mitochondrial membrane protein-
associated neurodegeneration (caused by c9orf12
mutations),99 RAB39B mutations,100 and VPS13C
mutations.101

Of note, several variants in the glucocerebrosidase
(GBA1) gene102 and a single variant in LRRK2
(G2019S)103 appear to be conceptually different, in
that they represent strong genetic determinants of dis-
ease which, however, display intermediate frequency
and effect size between the classical rare, highly pene-
trant Mendelian variants, on one end, and the com-
mon small-effect risk variants (GWAS), on the other
end of the spectrum. In some populations (North Afri-
can Berbers or Ashkenazi Jews) the LRRK2-G2019S
variant is present in about 30% to 40% of the typical
iPD patients, including familial and sporadic forms.104

Other monogenic forms of PD also present diverse
motor features and LBP, hinting at complex underlying
biology (Table 1).
If the wide clinical variability associated with the

monogenic forms would be true for the disease in gen-
eral, we should consider that PD, and at least some
cases presenting as different neurodegenerative diseases
(eg, DLB, PSP), might actually share the underlying
biology. Understanding this may actually enable us to
tackle the disease more accurately.

Current “Diagnostic” Biomarkers
Molecular Imaging Biomarkers

Molecular imaging biomarkers were first applied in
PD over 30 years to assess dopaminergic denervation as
well as changes in postsynaptic striatal dopamine recep-
tors and brain metabolism related to disease progres-
sion and cognitive decline.105,106 These first studies
utilized PET with three key tracers (18F-fluorodopa,
11C-raclopride, and 18F-fluorodeoxyglucose) and were
performed in limited cohorts, mainly for research pur-
poses. However, the possibility to highlight defects in
dopamine metabolism in both premotor and early PD
has provided the groundwork for more extensive use of
molecular imaging in clinical practice. The introduction
of DAT imaging of the striatal DAT with SPECT has
extended the availability of molecular imaging as a bio-
marker for clinical diagnosis. The diagnostic accuracy
of DAT-SPECT imaging is very high, with over 90%
sensitivity and specificity, but may differentiate only
between degenerative and nondegenerative parkinson-
ism, as loss of DAT in the striatum is common to most
conditions affecting the basal ganglia (including vascular
lesions and atypical PD).107,108 A number of studies have
reported the impact of DAT-SPECT imaging on clinical
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utility, suggesting that its use in the diagnostic workup is
cost-effective, can shorten time to diagnosis, and change
therapeutic management.109,110 DAT-SPECT imaging has
also been considered as a surrogate progression bio-
marker in clinical trials testing neuroprotection or disease
modification (eg, recent studies on immunotherapies). To
support this potential application, European medicines
agency (EMA) just qualified DAT-SPECT to be used as
an enrichment biomarker in PD clinical trials assessing
dopamine deficiency consistent with parkinsonism as a
tool to aid in subject selection.111 Nevertheless, the signifi-
cance of prospective changes in the DAT is challenged by
the possibility of variable modulation of this transporter
by the investigational products affecting tracer binding
and by the limited relationship between the magnitude of
loss and functional disability. In addition, the relationship
between DAT-SPECT binding decrements and nigral cell
degeneration is not linear. In particular, during onset of
motor symptoms, loss of DAT may occur with relatively
preserved nigral cell body function.112

Recently, PET imaging has been used to detect con-
comitant amyloid pathology in PD patients to assess its
contribution to cognitive decline.113 As many as 30%
to 50% of PDD and DLB patients demonstrated diffuse
deposits similar to those detected in AD, indicating that
amyloid pathology plays an important but not exclusive
role in cognitive decline in synucleinopathies114 and/or
reflecting co-occurrence of PD and the more
frequent AD.

Structural and Functional Magnetic Resonance
Imaging

Compared to molecular imaging, magnetic resonance
imaging (MRI) allows acquisition of multiple comple-
mentary biomarkers of brain functions for both clinical
and research purposes in PD. Specific changes in the
basal ganglia, brainstem, and cerebellum are now con-
sidered good biomarkers for early identification of
atypical parkinsonism versus PD.115

Several studies have reported nigral changes in PD
reflecting increased iron content using quantitative
iron-sensitive techniques.116,117 However, other studies
have also reported overlap with healthy controls (HC),
and a few found no changes between PD patients and
HCs.118 Increased iron content was also demonstrated
in both asymptomatic and symptomatic LRRK2 and
PRKN mutation carriers. Asymptomatic carriers had
values in the range of those of PD patients, suggesting
that iron deposition is an early event possibly occurring
in premotor PD.119 Independently of the role of iron in
the substantia nigra and its contribution to the patho-
physiology of PD, a recent trial showed that although it
is possible to reduce the nigrostriatal iron content using
a chelator (deferiprone), it was associated with an
aggravation of parkinsonism questioning the potential

benefits of such an intervention and the true role of iron
in the pathogenesis of PD.120

An alternative approach is to investigate nigral pars
compacta changes profiting from paramagnetic proper-
ties of neuromelanin and using high-resolution
T1-weighted images.121 This approach has shown bet-
ter diagnostic accuracy than iron nigral signal in sepa-
rating PD from essential tremor and HCs,122 and also
in LRRK2 patients.123

Finally, volumetric and functional resting-state MRI
techniques have been used extensively as biomarkers of
progression, particularly to detect changes related to
cognitive decline. Dopamine depletion and spread of
the pathology to the cortex lead to regional gray matter
thinning, decreased coupling in the corticostriatal sen-
sorimotor network and between the striatum and the
brainstem, and global changes in brain dynamics. Cur-
rently, application of MRI biomarkers should be
mainly considered explorative, because reproducibility
and harmonization of acquisition and methods of ana-
lyses across different scanners remain a relevant limit-
ing factor.124

Biochemical and Molecular Markers
As described earlier, the heterogeneity of PD, the

complexity of underlying causes, and the gradual pro-
gressive decline of various functions indicate that a sin-
gle, nonimaging-based biomarker is unlikely to be
sufficient for the diagnosis of PD. Instead, a combina-
tion of different biomarkers, or perhaps even an algo-
rithm, will be required to diagnose each variant at
different stages of illness.
Despite the aforementioned variability, the accumula-

tion of misfolded α-syn in LBs is still considered a prin-
cipal pathological hallmark of typical PD. Therefore,
the focus of intense research activity in the field for
more than 15 years has been the quantification of α-syn
for biomarker purposes. In particular, α-syn is currently
considered to be released and to spread between cells,
possibly via the extracellular space, reaching the CSF
and interstitial fluid. In fact, the presence of full-length
α-syn has been convincingly shown in extracellular
matrices, such as plasma, conditioned cell media, and
CSF.125,126 It is currently considered that only a minute
amount of the abundant intracellular aSyn protein is
physiologically released into the extracellular space.
Most studies suggest a 10% to 15% reduction in total
α-syn in the CSF in PD patients, consistent with find-
ings in other α-syn-aggregation disorders, such as DLB
and MSA.127-129 However, recent evidence indicates
that the characteristics of CSF aggregates of aSyn that
are associated with PD and MSA may correspond to
different conformational strains of aSyn and can dis-
criminate between the two disorders.130 Studies identi-
fying and quantifying posttranslationally modified
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forms of aSyn in CSF (eg, oligomerization or phosphor-
ylation) have been reported.131,132

Importantly, recent technological developments are
enabling the detection of other forms of α-syn, not only
in the CSF but also in other body fluids.133 Optimized
aSyn seeding amplification assays, as informed by excit-
ing advances in the biomarker field of prion proteins,
have shown high sensitivity and specificity to diagnose
PD.134-136 These findings create excitement and hope
that this platform could be used diagnostically in the
future. At the present moment, four disadvantages of
these assays still remain but are on the verge of being
overcome: (1) time-consuming execution, (2) lack of a
quantitative (rather than qualitative) readout that
would enable the assessment of response to disease-
modifying treatment over time, (3) requirement for rou-
tine standardization (ie, beyond the current small num-
ber of laboratories that can perform them), and
(4) identification of the mechanism(s) by which the
assays separate PD from other synucleinopathies.
Although the effect of templating of PD-derived CSF
samples has been clearly achieved through exogenously
added, recombinant, full-length aSyn, the nature of the
“templating agent,” that is, aSyn itself versus non-aSyn-
based CSF constituent(s), has remained elusive. Interest-
ingly, short RNA-sequencing revealed PD-characteristic
patterns in both the CSF and blood.137 These methods
also need to be developed for higher throughput.
Whether the slope of aggregation in vitro can separate
between early PD and late PD as well as between typi-
cal PD and other forms of parkinsonism remains to be
determined.
Besides aSyn, other marker candidates will likely be

added to a diagnostic algorithm. With inflammation
being a risk factor for PD,138,139 inflammatory
markers like interleukin 6, tumor necrosis factor-α,
and others may be interesting candidates.140,141 The
critical question will be whether markers of cellular
injury in the CNS (eg, neurofilament, tau-protein, glial
fibrillary acidic protein) and circular RNAs that are
not expressed by nonneuronal cells in the periphery
could emerge as markers of PD progression. Neu-
rofilament light chain as a marker for axonal damage
has been shown to be significantly elevated in CSF and
blood in various neurodegenerative disorders, includ-
ing multiple sclerosis and amyotrophic lateral sclero-
sis.142 In PD, neurofilament levels are slightly higher
versus HCs and enable a good separation from other
differential diagnoses (with markedly higher levels in
atypical parkinsonian syndromes), even in serum, and
show longitudinal correlation with disease progres-
sion.143 Other CSF and blood markers have been stud-
ied in different cohorts and are currently being
validated systematically in cohorts like the PPMI,
which, as a matter of fact, suffer from the limitations
of the clinical definitions.144

Apart from the more etio-pathological-related bio-
chemical markers, it should not be forgotten that the
recent update on the research criteria for prodromal PD
recognized diabetes and low plasma urate levels in men
as new prodromal markers, although it remains unclear
if the association is causal.57

Tissue biomarkers (eg, aSyn in skin biopsies) are also
currently being explored and could enable us to support
the clinical diagnosis of PD, and/or of variants, in the
future.145

Redefining PD: Implications for Cell
and Animal Models

The Value of Model Systems
Cell and animal models of different diseases can often

lack direct relevance for the human disease and for
predicting clinical outcomes of investigational therapeu-
tic strategies. Yet preclinical studies in cells and animals
are usually required before clinical trials can proceed,
and animal models are needed to identify and test path-
ophysiological mechanisms that cannot be studied in
humans.146,147 Because of the reasons discussed earlier,
modeling a disease like PD has not proven to be trivial
as it is not always clear which aspects of the disease
should be modeled.147

Classical Toxin-Based Models of PD
The classical animal PD models, which have been used

since the 1960s, are based on the destruction of the
nigrostriatal dopaminergic neurons with toxins, adminis-
tered either locally or systemically. The most commonly
used toxins are 6-hydroxydopamine, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine, and, to a lesser extent, rote-
none and paraquat. These toxin-based models have been
useful for the identification and testing of treatments for
the cardinal motor deficits of PD. As such, these models
have contributed to the development of dopamine ago-
nists and deep brain stimulation and also provide useful
tools for developing treatments for levodopa-induced
dyskinesia. However, they have failed to predict clinical
success of neuroprotective strategies, as such models are
unlikely to reproduce the pathophysiological mecha-
nisms of the disease.

Genetic-Based Models: The Need for Doing
Better

The difficulties in defining PD clearly indicate that no
model can be seen as a “perfect” model of such a complex
disease. At the very least, a “good” model should be based
on a mechanism that is known, from studies in humans,
to be relevant to at least some forms of the disease.
Mechanisms uncovered by rare genetic forms turn

out to contribute to our understanding of sporadic
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PD. Therefore, genetic models become highly relevant
for testing hypotheses and neuroprotective treatments.
The difficulty remains to define which aspect(s) of PD
need to be present for the model to qualify as a “good”
model of the disease.
A diverse range of animal models are extremely

important for addressing specific aspects of the disease.
For example, simple and versatile model organisms
such as the invertebrates Caenorhabditis elegans and
Drosophila are useful to elucidate genetic interactions
and mechanisms; and mammalian models in mice, rats,
and, in some cases, nonhuman primates are critical to
reproduce circuit-level alterations.
In conclusion, the “best” model of PD is one that best

enables us to address the question being asked, rather
than an elusive animal model that would reproduce all
phenotypical aspects of PD. Because those aspects are not
necessarily present in all patients or forms of the disease,
a useful model should rather reproduce mechanisms that
are disease relevant and match the intended drug target.
Thus, the current difficulty in providing a simple and

universal definition of PD illustrates the need for multiple
models and for critical evaluation of key pathologies and
phenotypes in each model. Which specific aspect(s) of the
disease does it reproduce? How meaningful and robust
are the endpoints? To what extent can the findings in this
particular model be generalized to span other forms of
PD? Similar to the clinician who needs to recognize PD
behind diverse clinical presentations and possible causes,
basic and translational scientists should be open to recog-
nize how a particular model is suited for the study of any
particular aspect of this complex disorder. All models
that are genetically relevant to PD should therefore be
viewed as useful for the identification and mechanistic
understanding of central and peripheral symptoms and
pathologies found in disease.

Cell Models of PD
Cell models of autosomal dominant forms of genetic

PD, relying on the expression of wild-type or mutant
forms of the proteins, are very useful for assessing

(a) (b) (c)

(d) (e) (f)

FIG.. 2. Neuronal loss in the substantia nigra pars compacta does not correlate with Lewy body (LB) pathology. (A–C) Luxol hematoxylin eosin (LHE)
staining (as described in Agin-Liebes et al148) of (A) PD case showing loss of pigmented neurons, presence of macrophages, and LB-containing neu-
rons; (B) incidental LB disease case showing LB-containing neurons; (C) LRRK2 case (G2019S mutation) showing severe loss of pigmented neurons
and no LB-containing neurons. Scale bar: 20 mm. (D–F) Immunostaining against aSyn (α-synuclein, as described in Agin-Liebes et al148) of the same
cases as in the images on top. (D) PD case showing LB- and LN (Lewy neurites)-containing neurons. (E) Incidental LB disease case showing LB- and
LN-containing neurons. (F) LRRK2 case (G2019S mutation) showing no LB- or LN-containing neurons. Magnification 400�. [Color figure can be viewed
at wileyonlinelibrary.com]
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specific molecular alterations, despite limitations due to
their simplicity.148 Importantly, cell-based models offer
the possibility of still much-needed, large-scale efforts
often referred to as “fishing expeditions,” in search of
the molecular mechanisms underlying the PD
pathophysiology.

Concluding Remarks
iPD is a heterogeneous entity presenting with diverse

clinical features that encompass motoric and nonmotor-
based signs. Despite tremendous progress in our under-
standing of the pathological mechanisms and of clinical
features involved, the underlying cause(s) of iPD is/are
unknown in almost 90% of the cases. Strikingly, almost
all diagnostic criteria applied in clinical practice and
research are based on expert-based consensus, case series,
and limited clinicopathological correlations. There are
currently no established disease subtype classifications,
which question the adequacy of the current clinical and
biological factors used for the definition of progression
models. Therefore, current subtype classifications are
mainly generated using clinical data analysis with limited
cohort sizes and lack of extensive neuroimaging, neuro-
physiological, and wet-laboratory markers, including
genetics as well as autopsy confirmation. This results in
weak correlation with biological markers and problems
with replicability. Interestingly, new prodromal criteria
strengthen the association with potential biological
markers but do not reliably indicate the fact, the direction
(ie, iRBD developing into MSA, PD, DLB), or the time of
conversion. Protective factors (eg, resilience or genetic fac-
tors) have also not been studied extensively in this regard.
In conclusion, although there is still a tremendous need

to improve our understanding of the underlying biology
leading to PD, we are confident that we are now at a
point where clinical, genetic, imaging, detailed pathologi-
cal examinations and biological data should enable us to
better define the “riddle” of PD to ultimately identify
novel diagnostics and therapeutic strategies.
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