844 research outputs found

    Western Rural Development Center 2021

    Get PDF

    Western Rural Development Center FY22

    Get PDF

    Imaging of VSOP Labeled Stem Cells in Agarose Phantoms with Susceptibility Weighted and T2* Weighted MR Imaging at 3T: Determination of the Detection Limit

    Get PDF
    Objectives: This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP) at 3T with susceptibility weighted (SWI) and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep). Materials and Methods We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0–100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the number of cells, and rated for detectability according to a four-step scale. Images of Group B were subject to a ROI-based analysis of signal intensities. Signal deviations of more than the 0.95 confidence interval in cell containing layers as compared to the mean of the signal intensity of non cell bearing layers were considered significant. Results: Group A: 500 or more labeled cells were judged as confidently visible when examined with a SWI-sequence with 0.15 mm slice thickness. Group B: 500 or more labeled cells showed a significant signal reduction in SWI sequences with a slice thickness of 0.25 mm. Slice thickness and cell number per layer had a significant influence on the amount of detected signal reduction. Conclusion: 500 VSOP labeled stem cells could be detected with SWI imaging at 3 Tesla using an experimental design suitable for large animal models

    A Simple Likelihood Method for Quasar Target Selection

    Full text link
    We present a new method for quasar target selection using photometric fluxes and a Bayesian probabilistic approach. For our purposes we target quasars using Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g=22. The efficiency and completeness of this technique is measured using the Baryon Oscillation Spectroscopic Survey (BOSS) data, taken in 2010. This technique was used for the uniformly selected (CORE) sample of targets in BOSS year one spectroscopy to be realized in the 9th SDSS data release. When targeting at a density of 40 objects per sq-deg (the BOSS quasar targeting density) the efficiency of this technique in recovering z>2.2 quasars is 40%. The completeness compared to all quasars identified in BOSS data is 65%. This paper also describes possible extensions and improvements for this techniqueComment: Updated to accepted version for publication in the Astrophysical Journal. 10 pages, 10 figures, 3 table

    Butterfly-parasitoid-hostplant interactions in Western Palaearctic Hesperiidae: a DNA barcoding reference library

    Get PDF
    The study of ecological interactions between plants, phytophagous insects and their natural enemies is an essential but challenging component for understanding ecosystem dynamics. Molecular methods such as DNA barcoding can help elucidate these interactions. In this study, we employed DNA barcoding to establish hostplant and parasitoid interactions with hesperiid butterflies, using a complete reference library for Hesperiidae of continental Europe and north-western Africa (53 species, 100% of those recorded) based on 2934 sequences from 38 countries. A total of 233 hostplant and parasitoid interactions are presented, some recovered by DNA barcoding larval remains or parasitoid cocoons. Combining DNA barcode results with other lines of evidence allowed 94% species-level identification for Hesperiidae, but success was lower for parasitoids, in part due to unresolved taxonomy. Potential cases of cryptic diversity, both in Hesperiidae and Microgastrinae, are discussed. We briefly analyse the resulting interaction networks. Future DNA barcoding initiatives in this region should focus attention on north-western Africa and on parasitoids, because in these cases barcode reference libraries and taxonomy are less well developed.Support for this research was provided by the Spanish National Research Council (CSIC) with a JAE-Intro fellowship for the introduction to research to ETD (reference numbers JAEINT_20_00248 and JAEINT20_EX_0638) and by projects PID2019-107078GB-I00/MCIN/AEI/10.13039/501100011033 and 2017-SGR-991 (Generalitat de Catalunya) to RV, and PID2020-117739GA-I00/MCIN/AEI/10.13039/501100011033 to GT. We thank the Rachadaphiseksomphot Fund, Graduate School, Chulalongkorn University, for the award of a Senior Postdoctoral Fellowship to DLJQ. Further support for this research was provided by the Academy of Finland (Academy Research Fellow, decision no. 328895) to VD. PDNH acknowledges support from Genome Canada through Ontario Genomics. BV has been funded by the CERCA Programme of the Generalitat de Catalunya and by the Grant RYC-22243-2017, whose PI is Josep Sardanyés. SV was supported by the Spanish Ministry of Economy and Competitiveness, grant PID2020-117822GB-I00 MINEICO/AEI/ FEDER and the European Union.INTRODUCTION MATERIAL AND METHODS RESULTS DISCUSSION CONCLUSION SUPPORTING INFORMATION ACKNOWLEDGEMENTS DATA AVAILABILITY REFERENCES Supplementary dat

    Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies

    Get PDF
    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872,921 galaxies over ~ 10,000 deg^2 between 0.45<z<0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey (BOSS) luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, Ho et al. 2011, to derive the location of Baryon acoustic oscillations (BAO) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D_A/r_s= 9.212 + 0.416 -0.404 at z=0.54, and therefore, D_A= 1411+- 65 Mpc at z=0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D_A is 1.4 \sigma higher than what is expected for the concordance LCDM (Komatsu et al. 2011), in accordance to the trend of other spectroscopic BAO measurements for z >~ 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS (Percival et al. 2010) and WiggleZ (Blake et al. 2011). We refer to our companion papers (Ho et al. 2011; de Putter et al. 2011) for investigations on information of the full power spectrum.Comment: 16 pages, 14 figures, 3 tables, submitted to Ap

    The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7

    Full text link
    The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the Universe. The CSP differs from other projects to date in its goal of providing an I-band {rest-frame} Hubble diagram. Here we present the first results from near-infrared (NIR) observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the Universe is accelerating. When combined with independent results from baryon acoustic oscillations (Eisenstein et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and Omega_DE = 0.76 +/- 0.13 (statistical) +/- 0.09 (systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, w, assume a flat geometry, and combine with baryon acoustic oscillations, we find that w = -1.05 +/- 0.13 (statistical) +/- 0.09 (systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R_V = 1.8) than that in the Milky Way (where R_V = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia independent of the decline rate.Comment: 44 pages, 23 figures, 9 tables; Accepted for publication in the Astrophysical Journa
    corecore