105 research outputs found

    A Spoonful of Math Helps the Medicine Go Down: An Illustration of How Healthcare can Benefit from Mathematical Modeling and Analysis

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>A recent joint report from the Institute of Medicine and the National Academy of Engineering, highlights the benefits of--indeed, the need for--mathematical analysis of healthcare delivery. Tools for such analysis have been developed over decades by researchers in Operations Research (OR). An OR perspective typically frames a complex problem in terms of its essential mathematical structure. This article illustrates the use and value of the tools of operations research in healthcare. It reviews one OR tool, queueing theory, and provides an illustration involving a hypothetical drug treatment facility.</p> <p>Method</p> <p>Queueing Theory (QT) is the study of waiting lines. The theory is useful in that it provides solutions to problems of waiting and its relationship to key characteristics of healthcare systems. More generally, it illustrates the strengths of modeling in healthcare and service delivery.</p> <p>Queueing theory offers insights that initially may be hidden. For example, a queueing model allows one to incorporate randomness, which is inherent in the actual system, into the mathematical analysis. As a result of this randomness, these systems often perform much worse than one might have guessed based on deterministic conditions. Poor performance is reflected in longer lines, longer waits, and lower levels of server utilization.</p> <p>As an illustration, we specify a queueing model of a representative drug treatment facility. The analysis of this model provides mathematical expressions for some of the key performance measures, such as average waiting time for admission.</p> <p>Results</p> <p>We calculate average occupancy in the facility and its relationship to system characteristics. For example, when the facility has 28 beds, the average wait for admission is 4 days. We also explore the relationship between arrival rate at the facility, the capacity of the facility, and waiting times.</p> <p>Conclusions</p> <p>One key aspect of the healthcare system is its complexity, and policy makers want to design and reform the system in a way that affects competing goals. OR methodologies, particularly queueing theory, can be very useful in gaining deeper understanding of this complexity and exploring the potential effects of proposed changes on the system without making any actual changes.</p

    Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study

    Get PDF
    BACKGROUND: Mutations altering BLM function are associated with highly elevated cancer susceptibility (Bloom syndrome). Thus, genetic variants of BLM and proteins that form complexes with BLM, such as TOP3A and RMI1, might affect cancer risk as well. METHODS: In this study we have studied 26 tagged single nucleotide polymorphisms (tagSNPs) in RMI1, TOP3A, and BLM and their associations with cancer risk in acute myeloid leukemia/myelodysplatic syndromes (AML/MDS; N = 152), malignant melanoma (N = 170), and bladder cancer (N = 61). Two population-based control groups were used (N = 119 and N = 156). RESULTS: Based on consistency in effect estimates for the three cancer forms and similar allelic frequencies of the variant alleles in the control groups, two SNPs in TOP3A (rs1563634 and rs12945597) and two SNPs in BLM (rs401549 and rs2532105) were selected for analysis in breast cancer cases (N = 200) and a control group recruited from spouses of cancer patients (N = 131). The rs12945597 in TOP3A and rs2532105 in BLM showed increased risk for breast cancer. We then combined all cases (N = 584) and controls (N = 406) respectively and found significantly increased risk for variant carriers of rs1563634 A/G (AG carriers OR = 1.7 [95%CI 1.1-2.6], AA carriers OR = 1.8 [1.2-2.8]), rs12945597 G/A (GA carriers OR = 1.5 [1.1-1.9], AA carriers OR = 1.6 [1.0-2.5]), and rs2532105 C/T (CT+TT carriers OR = 1.8 [1.4-2.5]). Gene-gene interaction analysis suggested an additive effect of carrying more than one risk allele. For the variants of TOP3A, the risk increment was more pronounced for older carriers. CONCLUSION: These results further support a role of low-penetrance genes involved in BLM-associated homologous recombination for cancer risk

    Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models.</p> <p>Results</p> <p>Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS).</p> <p>As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling.</p> <p>Conclusions</p> <p>In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.</p

    HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation

    Get PDF
    APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1

    Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health

    Full text link

    Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease

    Get PDF
    \ua9 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Metopic synostosis

    Get PDF
    Premature closure of the metopic suture results in a growth restriction of the frontal bones, which leads to a skull malformation known as trigonocephaly. Over the course of recent decades, its incidence has been rising, currently making it the second most common type of craniosynostosis. Treatment consists of a cranioplasty, usually preformed before the age of 1 year. Metopic synostosis is linked with an increased level of neurodevelopmental delays. Theories on the etiology of these delays range from a reduced volume of the anterior cranial fossa to intrinsic malformations of the brain. This paper aims to provide an overview of this entity by giving an update on the epidemiology, etiology, evolution of treatment, follow-up, and neurodevelopment of metopic synostosis

    Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease

    Get PDF
    Introduction: There is conflicting evidence whether high-density lipoprotein cholesterol (HDL-C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL-C. We aimed to assess AD risk by genetically predicted HDL-C. Methods: Ten single nucleotide polymorphisms within the CETP locus predicting HDL-C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR-Egger. Results: Based on 10 single nucleotide polymorphisms distinctly predicting HDL-C in the CETP locus, we found that HDL-C was not associated with risk of AD (P > .7). Discussion: Our study does not support the role of HDL-C on risk of AD through HDL-C altered by CETP. This study does not rule out other mechanisms by which HDL-C affects risk of AD
    corecore