43 research outputs found

    Sir2p suppresses recombination of replication forks stalled at the replication fork barrier of ribosomal DNA in Saccharomyces cerevisiae

    Get PDF
    6 p.-3 fig.In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae replication forks progressing against transcription stall at a polar replication fork barrier (RFB) located close to and downstream of the 35S transcription unit. Forks blocked at this barrier are potentially recombinogenic. Plasmids bearing the RFB sequence in its active orientation integrated into the chromosomal rDNA in sir2 mutant cells but not in wild-type cells, indicating that the histone deacetylase silencing protein Sir2 (Sir2p), which also modulates the aging process in yeast, suppresses the recombination competence of forks blocked at the rDNA RFB. Orientation of the RFB sequence in its inactive course or its abolition by FOB1 deletion avoided plasmid integration in sir2 mutant cells, indicating that stalling of the forks in the plasmid context was required for recombination to take place. Altogether these results strongly suggest that one of the functions of Sir2p is to modulate access of the recombination machinery to the forks stalled at the rDNA RFB.This work was partially supported by grants PGC PB98-048 from the Spanish Comisión Interministerial de Ciencia y Tecnología, SAF2001-1740 from the Spanish Ministerio de Ciencia y Tecnología and 08.5/0057/2001.1 and 08.1/0067/2001.1 from the Comunidad Autónoma de Madrid.Peer reviewe

    Single cell clonal analysis identifies an AID-dependent pathway of plasma cell differentiation.

    Get PDF
    Germinal centers (GC) are microstructures where B cells that have been activated by antigen can improve the affinity of their B cell receptors and differentiate into memory B cells (MBCs) or antibody-secreting plasma cells. Here, we have addressed the role of activation-induced deaminase (AID), which initiates somatic hypermutation and class switch recombination, in the terminal differentiation of GC B cells. By combining single cell transcriptome and immunoglobulin clonal analysis in a mouse model that traces AID-experienced cells, we have identified a novel subset of late-prePB cells (L-prePB), which shares the strongest clonal relationships with plasmablasts (PBs). Mice lacking AID have various alterations in the size and expression profiles of transcriptional clusters. We find that AID deficiency leads to a reduced proportion of L-prePB cells and severely impairs transitions between the L-prePB and the PB subsets. Thus, AID shapes the differentiation fate of GC B cells by enabling PB generation from a prePB state.We thank all the members of the B lymphocyte Biology lab for helpful suggestions, Ana Rodriguez-Ronchel for the elaboration of the graphical abstract, Sonia Mur for technical assistance, Virginia G de Yebenes for critical reading of our manuscript, Julia Merkenschlager, Carlos Torroja, and Enrique Vazquez for their advice on single cell sequencing and analysis, the CNIC Flow Cytometry for assistance on cell analysis and separation and the CNIC Genomics Unit for single cell sequencing. We also thank Sergio Roa, Alicia G Arroyo, Salvador Iborra, and David Sancho for kindly sharing mouse lines and reagents with us. CG-E is supported by a fellowship awarded by La Caixa Espana in ~ 2017 and ASN is an FPI Severo Ochoa fellow (PRE2018-083475). AB, FS-C, and ARR are supported by CNIC. This project was funded by grants from the Spanish Ministerio de Econom ıa, Industria y Competitividad (SAF2016-75511-R), the Spanish Ministerio de Ciencia e Innovaci on (PID2019-106773RB-I00/AEI/10.13039/ 501100011033) and the “la Caixa” Banking Foundation under the project code HR17-00247 to ARR. FS-C is supported by the project RT2018-102084-B-I00 financed by MCIN/AEI/10.13039/5011000110033/ and by FEDER Una Manera de hacer Europa and by Ayuda EQC2021-007294-P financed by MCIN/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovacion (MCIN), and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence, CEX2020-001041-S funded by MICIN/AEI/10.13039/ 501100011033.S

    Senescence in premalignant tumours

    Get PDF
    Oncogene-induced senescence is a cellular response that may be crucial for protection against cancer development1,2, but its investigation has so far been restricted to cultured cells that have been manipulated to overexpress an oncogene. Here we analyse tumours initiated by an endogenous oncogene, ras, and show that senescent cells exist in premalignant tumours but not in malignant ones. Senescence is therefore a defining feature of premalignant tumours that could prove valuable in the diagnosis and prognosis of cancer

    Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome

    Get PDF
    10 pages, 2 figures, 5 tables.CONTEXT: The polycystic ovary syndrome (PCOS) is frequently associated with visceral obesity, suggesting that omental adipose tissue might play an important role in the pathogenesis of the syndrome. OBJECTIVE: The objective was to study the expression profiles of omental fat biopsy samples obtained from morbidly obese women with or without PCOS at the time of bariatric surgery. DESIGN: This was a case-control study. SETTINGS: We conducted the study in an academic hospital. PATIENTS: Eight PCOS patients and seven nonhyperandrogenic women submitted to bariatric surgery because of morbid obesity. INTERVENTIONS: Biopsy samples of omental fat were obtained during bariatric surgery. MAIN OUTCOME MEASURE: The main outcome measure was high-density oligonucleotide arrays. RESULTS: After statistical analysis, we identified changes in the expression patterns of 63 genes between PCOS and control samples. Gene classification was assessed through data mining of Gene Ontology annotations and cluster analysis of dysregulated genes between both groups. These methods highlighted abnormal expression of genes encoding certain components of several biological pathways related to insulin signaling and Wnt signaling, oxidative stress, inflammation, immune function, and lipid metabolism, as well as other genes previously related to PCOS or to the metabolic syndrome. CONCLUSION: The differences in the gene expression profiles in visceral adipose tissue of PCOS patients compared with nonhyperandrogenic women involve multiple genes related to several biological pathways, suggesting that the involvement of abdominal obesity in the pathogenesis of PCOS is more ample than previously thought and is not restricted to the induction of insulin resistance.This work was supported by PI020578, PI020741, PI050341, PI050551, RCMN C03/08, and RGDM 03/212 from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, and Grants 08.6/0021/2003 and GR/SAL/0137/2004 from the Consejería de Educación y Cultura, Comunidad de Madrid, Spain.Peer reviewe

    The “ageing” experiment in the Spanish Soyuz mission to the international space station

    Get PDF
    Manuscript version.-- Final version of the publisher available on http://www.springerlink.com/content/5703g0375l066734/?p=1823d8063e69447cbbb58584de4e2425&pi=2Human exploration of outer space will eventually take place. In preparation for this endeavour, it is important to establish the nature of the biological response to a prolonged exposure to the space environment. In one of the recent Soyuz Missions to serve the International Space Station (ISS), the Spanish Soyuz mission in October 2003, we exposed four groups of Drosophila male imagoes to microgravity during the almost eleven days of the Cervantes mission to study their motility behaviour. The groups were three of young flies and one of mature flies, In previous space experiments, we have shown that when imagoes are exposed to microgravity they markedly change their behaviour by increasing their motility, especially if subjected to these conditions immediately after hatching. The constraints of the current Soyuz flights made it impossible to study the early post-hatching period. A low temperature cold transport was incorporated as a possible way out of this constraint. It turned out that on top of the space flight effects, the cold treatment by itself, modifies the motility behaviour of the flies. Although the four groups increased their motility, the young flies did it in a much lower extent than the mature flies that had not been exposed to the low temperature during transportation. Nevertheless, the flies flown in the ISS are still more active than the parallel ground controls. As a consequence of the lower motility stimulation in this experiment, a likely consequence of the cold transport step, no effects on the life spans of the flown flies were detected. Together with previous results, this study confirms that high levels of motility behaviour are necessary to produce significant decreases in fly longevity.Peer reviewe

    Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells

    Get PDF
    Retinitis pigmentosa; Alternative splicing; RNARetinitis pigmentosa; Empalme alternativo; ARNRetinitis pigmentària; Empalmament alternatiu; RNARetinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.This work was supported by Institute of Health Carlos III/ERDF (European Regional Development Fund), Spain [PI16/00409 (DL), PI20/01119 (DL), CP18/00033 (DL), PI15/00227 (MC), CPII16/00037 (SE), and PI18-00286 (SE)], Platform for Proteomics, Genotyping and Cell Lines; PRB3 of ISCIII (PT17/0019/0024); National Science Foundation GACR 18-04393S and the project “Centre of Reconstructive Neuroscience”, registration number CZ.02. 1.01/0.0./0.0/15_003/0000419PI15/00227; Spanish Ministry of Economy and Competitiveness grant BES-2016-076994 (ÁA-L); and Academy of Finland (HS)

    Co-regulation analysis of closely linked genes identifies a highly recurrent gain on chromosome 17q25.3 in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptional profiling of prostate cancer (PC) has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3.</p> <p>Methods</p> <p>We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed <it>in silico </it>colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH).</p> <p>Results</p> <p>The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, <it>in silico </it>analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent <it>in situ </it>hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples.</p> <p>Conclusion</p> <p>Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional insights into the causes and mechanisms of prostate cancer.</p

    Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells

    Get PDF
    Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.This work was supported by Institute of Health Carlos III/ERDF (European Regional Development Fund), Spain [PI16/00409 (DL), PI20/01119 (DL), CP18/00033 (DL), PI15/00227 (MC), CPII16/00037 (SE), and PI18-00286 (SE)], Platform for Proteomics, Genotyping and Cell Lines; PRB3 of ISCIII (PT17/0019/0024); National Science Foundation GACR 18-04393S and the project “Centre of Reconstructive Neuroscience”, registration number CZ.02. 1.01/0.0./0.0/15_003/0000419PI15/00227; Spanish Ministry of Economy and Competitiveness grant BES-2016-076994 (ÁA-L); and Academy of Finland (HS)

    Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration.

    Get PDF
    Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.We thank M. Jardí, A. Navarro, J. M. Ballestero, K. Slobodnyuk, M. González, J. López and M. Raya for their technical contributions; A. Harada and K. Tanaka for assistance in ATAC-seq; all of the members of the P.M.-C. laboratory for discussions; J. Campisi for p16-3MR mice; J. A. Fernández-Blanco (PRBB Animal Facility); O. Fornas (UPF/CRG FACS Facility); E. Rebollo (IBMB Molecular Imaging Platform); V. A. Raker for manuscript editing; and the members of the Myoage network (A. Maier) for human material. We acknowledge funding from MINECO-Spain (RTI2018-096068, to P.M.-C. and E.P.); ERC-2016-AdG-741966, LaCaixa-HEALTHHR17-00040, MDA, UPGRADE-H2020-825825, AFM, DPP-Spain, Fundació La MaratóTV3-80/19- 202021 and MWRF to P.M.-C.; Fundació La MaratóTV3-137/38-202033 to A.L.S.; Maria-de-Maeztu ́ Program for Units of Excellence to UPF (MDM-2014-0370) and Severo-Ochoa Program for Centers of Excellence to CNIC (SEV-2015-0505). This work was also supported by JST-CREST JPMJCR16G1 and MEXT/JSPS JP20H00456/18H05527 to Y.O.; the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502) to M.A.E.; V.M. and A.C. were supported by FPI and Maria-de-Maeztu predoctoral fellowships, respectively, and V.S. by a Marie Skłodowska-Curie individual fellowship. Parts of the figures were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licences/by/3.0/).S
    corecore