33 research outputs found

    Abiotic passive nitrogen and methane enrichment during exhumation of subducted rocks: primary multiphase fluid inclusions in high‐pressure rocks from the Cabo Ortegal Complex, NW Spain

    Get PDF
    Primary multiphase fluid inclusions (MFI) were studied in one eclogite and two granulites from the Cabo Ortegal Complex (COC, NW-Spain) by means of Raman imaging, SEM-EDS and FIB-SEM. Complementary, secondary MFI in pyroxenites from COC were also investigated. MFI hosted in eclogite and granulites occur along growth zones or in 3D clusters in garnet porphyroblasts suggesting a primary origin at high-pressure (HP) metamorphic conditions. The mineral assemblage of MFI is mainly composed of Fe-Mg-Ca-carbonates and phyllosilicates ± graphite ± quartz ± corundum ± pyrite ± apatite ± rutile and a fluid phase composed of nitrogen ± methane ± carbon-dioxide. The mineral proportions vary among the lithologies. Dominant carbonates and hydrous silicates are interpreted as step-daughter minerals (crystals formed in the MFI after entrapment as a result of fluid-host interaction), whereas apatite, quartz and rutile are considered in part as accidentally trapped minerals since they also occur as crystal inclusions together with MFI in each rock type. Quartz and corundum occur together in MFI in ultramafic granulite and are regarded as step-daughter minerals in this lithology. These observations suggest that the MFI are products of post-entrapment reactions of a homogeneous COHN fluid system with the host mineral. Thermodynamic calculations in the CaFMAS-COHN system confirmed that bulk composition of the MFI in eclogite is similar to the host garnet+COHN composition except for a potential lost of H2O. Carbonation and hydration reaction between the host (i.e., garnet or pyroxene) and the fluid inclusion results in the consumption of all CO2 and part of the H2O from the fluid phase producing Ca-Fe-Mg-carbonates and hydrous step-daughter minerals, mostly pyrophyllite and chlorite. Nitrogen content of the originally trapped COHN fluid in eclogite was estimated to have a maximum value of 10 mol% at peak HP conditions and 30–40 mol% at retrograde conditions that is within the range of the observed MFI in the residual fluid (13–68 mol%). Pseudosection modelling confirmed the stability of the phase assemblage in the MFI in a specific low pressure, low temperature stability field (between 300–400 °C at pressures < 1 GPa), caused by H2O and CO2-consuming reactions possibly in a single step. Our findings indicate that such processes in the exhuming HP units may play a role in global nitrogen and carbon cycling as well as potentially contributing to nitrogen and methane supply to subsurface-surface environments during devolatilization in the forearc regions of convergent plate margins

    Brittle-ductile deformation effects on zircon crystal-chemistry and U-Pb ages: an example from the Finero Mafic Complex (Ivrea-Verbano Zone, western Alps)

    Get PDF
    A detailed structural, geochemical and geochronological survey was performed on zircon grains from a leucocratic dioritic dyke discordantly intruded within meta-diorites/gabbros forming the External Gabbro unit of the Finero Mafic Complex. This latter is nowadays exposed as part of a near complete crustal section spanning from mantle rocks to upper crustal metasediments (Val Cannobina, Ivrea-Verbano Zone, Italy). The leucocratic dyke consists mainly of plagioclase (An18-24Ab79-82Or0.3-0.7) with subordinate amounts of biotite, spinel, zircon and corundum. Both the leucocratic dyke and the surrounding meta-diorites show evidence of ductile deformation occurred under amphibolite-facies conditions. Zircon grains (up to 2 mm in length) occur mainly as euhedral grains surrounded by fine grained plagioclasedominated matrix and pressure shadows, typically filled by oxides. Fractures and cracks within zircon are common and can be associated with grain displacement or they can be filled by secondary minerals (oxides and chlorite). Cathodoluminescence (CL) images show that zircon grains have internal features typical of magmatic growth, but with local disturbances. However EBSD maps on two selected zircon grains revealed a profuse mosaic texture resulting in an internal misorientation of ca. 10o. The majority of the domains of the mosaic texture are related to parting and fractures, but some domains show no clear relation with brittle features. Rotation angles related to the mosaic texture are not crystallographically controlled. In addition, one of the analysed zircons shows clear evidence of plastic deformation at one of its corners due to indentation. Plastic deformation results in gradual misorientations of up to 12o, which are crystallographically controlled. Trace elements and U-Pb analyses were carried out by LA-ICP-MS directly on petrographic thin sections and designed to cover the entire exposed surface of selected grains. Such investigations revealed a strong correlation between internal zircon structures, chemistry, U-Pb isotope ratios and mylonitic fabric. U-Pb data return highly discordant and variable ages: in particular, the 206Pb/238U ages range from Carboniferous to Triassic within the same zircon grain. The youngest 206Pb/238U data derive from narrow axial stripes oriented parallel or at low angle with respect to the foliation planes. These stripes are characterized by an overall HREE, Y, U and Th enrichment possibly reflecting deformation of the grain in presence of interstitial fluid phases, likely related to a concomitant magmatic activity. Deformation related structures (cracks and fractures) within zircon grains acted as fast-diffusion pathways allowing fluids to modify the geochemistry and isotopic systems of zircon. Our results suggest that fluid-assisted brittle-ductile deformation can severely modify the trace elements and isotopic composition of zircon with unexpected patterns constrained by stress regime. In similar cases, our observations suggest that, for a more appropriate interpretation of the petrologic evolution and age variability, a direct characterization of the internal structures of zircons still placed in their microtextural site is highly recommended

    Chromium Isotope Behavior During Serpentinite Dehydration in Oceanic Subduction Zones

    Get PDF
    Fluids released through the dehydration of serpentinite can be rich in Cl −, which enables the significant mobility of Cr in subduction zones. However, the Cr isotope behavior accompanying the mobility of Cr during serpentinite dehydration is still poorly constrained. Here, we report high-precision Cr isotope data for a unique suite of serpentinites that represent metamorphic products at different depths in oceanic subduction zones. Low-grade serpentinites affected by significant Cr loss during serpentinization exhibit remarkably higher δ 53Cr, while samples with Cr contents >∼1,800 ppm typically preserve mantle-like δ 53Cr. Antigorite serpentinites have an average δ 53Cr value of −0.17‰ ± 0.19‰ (n = 12, 2SD), which is statistically lower than those of low-grade serpentinite (−0.05‰ ± 0.30‰, n = 80, 2SD) and higher-grade chlorite harzburgite (−0.10‰ ± 0.27‰, n = 22, 2SD). This suggests that resolvable Cr isotope fractionation occurs during serpentinite dehydration, which is explained by the variability of Cr isotope behavior in the presence of Cl-bearing fluids at different dehydration stages. No obvious Cr isotope fractionation was found during chlorite harzburgite dehydration, probably related to the limited Cr mobility in a Cl-poor fluid. Other processes, such as melt extraction, external fluid influx and retrograde metamorphism, have negligible effects on the Cr isotope systematics of meta-serpentinites. Fluids released by serpentinite dehydration may have a great effect on the Cr isotope heterogeneity of mantle wedge peridotites and arc magmas.National Key Ramp;D Program of ChinaStrategic Priority Research Program (B) of CAS 2018YFA0702600National Natural Science Foundation of China (NSFC) XDB41000000Fundamental Research Funds for the Central Universities 42073029 41973004CNSAMICIN/AEI D020204FEDER program "Una manera de hacer Europa" PID2022-136471N-B-C21 C22 PID2019-111715GB-I00AEIFSE program "FSE invierte en tu futuro" RYC2018-024363-IJunta de AndaluciaEuropean Union (EU) Postdoc_21_00791European Social Fund (ESF)Junta de Andalucia RNM-131 RNM-37

    Olivine-rich veins in high-pressure serpentinites: A far-field paleo-stress snapshot during subduction

    Get PDF
    Field observations within the Atg-serpentinite domain of the subducted ultramafic massif from Cerro del Almirez (SE Spain) reveal the existence of two generations of abundant olivine-rich veins formed as open, mixed mode and shear fractures during prograde metamorphism. Type I veins were synchronous with the development of the serpentinite main foliation (S1) and shearing, whereas Type II veins post-date the S1 surfaces. These structural relationships indicate that, while the Atgserpentinites underwent ductile plastic deformation at temperatures of 450◦-600 ◦C and pressures of 0.7–1.7 GPa, they also experienced punctuated brittle behaviour events. The brittle fractures were most likely due to fluid overpressures formed by release of H2O during the brucite breakdown reaction for the case of Type I veins (2 vol % H2O) and due to a combination of minor dehydration reactions related to continuous compositional and structural changes in antigorite (0.3 vol % H2O) for Type II veins. Type II olivine-rich veins were formed by brittle failure in a well-defined paleo-stress field and were not significantly deformed after their formation. Comparison of the principal paleo-stress orientation inferred from Type II veins with those formed at peak metamorphic conditions in the ultramafic rocks at Cerro del Almirez shows a relative switch in the orientation of the maximum and minimum principal paleo-stress axes. These relative changes can be attributed to the cyclic evolution of shear stress, fluid pressure and fault-fracture permeability allowing for stress reversal.MICIN/AEI PID2019-105192GB-I00Junta de Andalucia RNM-208 RNM-141 RNM-145 RNM-131 RNM-374FEDER program "una manera de hacer Europa"Spanish Government RYC2018-024363-IUniversidad de Granada/ CBU

    Mantle wedge oxidation due to sediment-infiltrated deserpentinisation

    Get PDF
    This work is part of the project DESTINE (PID2019-105192GB-I00) funded by MICIN/AEI/10.13039/501100011033 and the FEDER program “una manera de hacer Europa”. J.A.P.N. acknowledges a Ramón y Cajal contract (RYC2018-024363-I) funded by MICIN/AEI/10.13039/501100011033 and the FSE program “FSE invierte en tu futuro”. This research is part of the Junta de Andalucia research group RNM-131.The Earth's mantle is oxygen-breathing through the sink of oxidised tectonic plates at convergent Margins. Ocean floor serpentinisation increases the bulk oxidation state of iron relative to dry oceanic mantle and results in a variable intake of other redox-sensitive elements such as sulphur. The reversibility of seafloor oxidation in subduction zones during high-pressure dehydration of serpentinite (“deserpentinisation”) at subarc depths and the capacity of the resulting fluids to oxidise the mantle source of arc basalts are highly contested. Thermodynamic modelling, experiments, and metaperidotite study in exhumed highpressure terrains result in differing estimates of the redox state of deserpentinisation fluids, ranging from low to highly oxidant. Here we show that although intrinsic deserpentinisation fluids are highly oxidant, the infiltration of small fractions of external fluids equilibrated with metasedimentary rocks strongly modulates their redox state and oxidation-reduction capacity explaining the observed discrepancies in their redox state. Infiltration of fluids equilibrated with graphite-bearing sediments reduces the oxidant, intrinsic deserpentinisation fluids to oxygen fugacities similar to those observed in most graphite-furnace experiments and natural metaperidotites. However, infiltration of CO2-bearing fluids equilibrated with modern GLOSS generates sulphate-rich, highly oxidising deserpentinisation fluids. We show that such GLOSS infiltrated deserpentinisation fluids can effectively oxidise the mantle wedge of cold to hot subduction zones potentially accounting for the presumed oxidised nature of the source of arc basalts.MICIN/AEI/10.13039/501100011033 (PID2019-105192GB-I00) (RYC2018-024363-I)FEDERFSEJunta de Andalucia research group RNM-131

    11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle

    Get PDF
    Serpentinites form by hydration of mantle peridotite and constitute the largest potential reservoir of fluid-mobile elements entering subduction zones. Isotope ratios of one such element, boron, distinguish fluid contributions from crustal versus serpentinite sources. Despite 85% of boron hosted within abyssal peridotite being lost at the onset of subduction at the lizardite-to-antigorite transition, a sufficient cargo of boron to account for the composition of island arc magma is retained (c. 7 μg g− 1, with a δ11B of + 22‰) until the down-going slab reaches the antigorite-out isograd. At this point a 11B-rich fluid, capable of providing the distinctive δ11B signature of island arc basalts, is released. Beyond the uniquely preserved antigorite-out isograd in serpentinites from Cerro del Almirez, Betic Cordillera, Spain, the prograde lithologies (antigorite–chlorite–orthopyroxene–olivine serpentinite, granofels-texture chlorite-harzburgite and spinifex-texture chlorite-harzburgite) have very different boron isotope signatures (δ11B = − 3 to + 6‰), but with no significant difference in boron concentration compared to the antigorite-serpentinite on the low P–T side of the isograd. 11B-rich fluid, which at least partly equilibrated with pelagic sediments, is implicated in the composition of these prograde lithologies, which dehydrated under open-system conditions. Serpentinite-hosted boron lost during the early stages of dehydration is readily incorporated into forearc peridotite. This, in turn, may be dragged to sub-arc depths as a result of subduction erosion and incorporated in a mélange comprising forearc serpentinite, altered oceanic crust and pelagic sediment. At the antigorite-out isograd it dehydrates, thus potentially providing an additional source of 11B-rich fluids

    Abiotic passive nitrogen and methane enrichment during exhumation of subducted rocks: Primary multiphase fluid inclusions in high-pressure rocks from the Cabo Ortegal Complex, NW Spain

    Get PDF
    Nemzeti Kutatasi Fejlesztesi es Innovacios Hivatal (NKFIH); Ramon y Cajal fellowship.Primary multiphase fluid inclusions (MFI) were studied in one eclogite and two granulites from the Cabo Ortegal Complex (COC, NW Spain) by means of Raman imaging, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) and Focused Ion Beam - Scanning Electron Microscopy (FIB)-SEM. Complementary, secondary MFI in pyroxenites from COC were also investigated. MFI hosted in eclogite and granulites occur along growth zones or in 3D clusters in garnet porphyroblasts suggesting a primary origin at high-pressure (HP) metamorphic conditions. The mineral assemblage of MFI is mainly composed of Fe-Mg-Ca-carbonates and phyllosilicates +/- graphite +/- quartz +/- corundum +/- pyrite +/- apatite +/- rutile and a fluid phase composed of nitrogen +/- methane +/- carbon-dioxide. The mineral proportions vary among the lithologies. Dominant carbonates and hydrous silicates are interpreted as step-daughter minerals (crystals formed in the MFI after entrapment as a result of fluid-host interaction), whereas apatite, quartz and rutile are considered in part as accidentally trapped minerals since they also occur as crystal inclusions together with MFI in each rock type. Quartz and corundum occur together in MFI in ultramafic granulite and are regarded as step-daughter minerals in this lithology. These observations suggest that the MFI are products of post-entrapment reactions of a homogeneous COHN fluid system with the host mineral. Thermodynamic calculations in the CaFMAS-COHN system confirmed that bulk composition of the MFI in eclogite is similar to the host garnet+COHN composition except for a potential lost of H2O. Carbonation and hydration reaction between the host (i.e. garnet or pyroxene) and the fluid inclusion results in the consumption of all CO2 and part of the H2O from the fluid phase producing Ca-Fe-Mg-carbonates and hydrous step-daughter minerals, mostly pyrophyllite and chlorite. Nitrogen content of the originally trapped COHN fluid in eclogite was estimated to have a maximum value of 10 mol% at peak HP conditions and 30-40 mol% at retrograde conditions that is within the range of the observed MFI in the residual fluid (13-68 mol%). Pseudosection modelling confirmed the stability of the phase assemblage in the MFI in a specific low-pressure, low-temperature stability field (between 300 degrees C and 400 degrees C at pressures < 1 GPa), caused by H2O- and CO2-consuming reactions possibly in a single step. Our findings indicate that such processes in the exhuming HP units may play a role in global nitrogen and carbon cycling as well as potentially contributing to nitrogen and methane supply to subsurface-surface environments during devolatilization in the forearc regions of convergent plate margins.National Research, Development & Innovation Office (NRDIO) - HungarySpanish Governmen

    Site-specific hydrogen diffusion rates in forsterite

    No full text
    International audienceSynthetic hydroxylated titanium-bearing and undoped MgO-buffered forsterite crystals were heated at atmospheric pressure in air at temperatures from 800 to 1200 °C to determine hydrogen diffusion as a function of the type of point-defect mechanism by which the hydroxyl is incorporated. OH-stretching bands, measured by infrared spectroscopy, were assigned to the four substitution mechanisms: Ti-clinohumite point defects, silicon and magnesium vacancies, and point defects associated with trivalent cations. In the experiments at 800 to 1000 °C, hydrous defects related to trivalent cations and Mg-vacancies disappear first in the Ti-doped forsterite, followed by the hydrous defects related to Ti and a fraction of the hydrated Si-vacancies. Measured bulk diffusion coefficients for hydrogen exchange related to the latter process are one order of magnitude slower than previously reported and with higher activation energy (View the MathML source296±14 kJmol−1). After the elimination of the defects related to Ti, the hydroxyl concentration related to Si-vacancies remained constant for the duration of the experiments. This observation is in agreement with the very slow diffusivity of hydrogen in Si-vacancies measured in the undoped MgO-buffered dehydroxylation experiments at higher temperatures (from 1000 to 1200 °C), which were ∼3 orders of magnitude slower than previously reported at 1000 °C, and with an activation energy of View the MathML source461±11 kJmol−1. Hydrogen diffusion in forsterite is far more complex than previously assumed. This complexity can be used to gain more information on the timescales of the processes causing olivine to lose its structural “water”, but quantitative modeling will require not only the knowledge of the intrinsic diffusivities of the different hydrous defects but also their relative proportions and the possible reactions between them

    Halogens and noble gases in serpentinites and secondary peridotites: Implications for seawater subduction and the origin of mantle neon

    No full text
    Ophiolitic serpentinites and secondary peridotites formed by serpentinite dehydration were investigated to improve constraints on the fates of noble gases and halogens during subduction zone metamorphism. The work extends previous studies to encompass F and four stages of serpentinization and serpentinite dehydration including: (i) oceanic serpentinites preserving the features of seafloor serpentinization; (ii) subducted high grade (olivine bearing) antigorite-serpentinites; (iii) spinifex and granofels textured chlorite harzburgites; and (iv) a garnet peridotite
    corecore