10 research outputs found

    Distribution of Small Integrin-binding Ligand, N-linked Glycoproteins (SIBLING) in the Articular Cartilage of the Rat Femoral Head

    No full text
    The small integrin-binding ligand, N-linked glycoprotein (SIBLING) family is closely related to osteogenesis. Until recently, little was known about their existence in articular cartilage. In this study, we systematically evaluated the presence and distribution of four SIBLING family members in rat femoral head cartilage: dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). First, non-collagenous proteins were extracted and then separated by ion-exchange chromatography. Next, the protein extracts eluted by chromatography were analyzed by Stains-all staining and Western immunoblotting. IHC was used to assess the distribution of these four SIBLING family members in the femoral head cartilage. Both approaches showed that all the four SIBLING family members are expressed in the femoral head cartilage. IHC showed that SIBLING members are distributed in various locations throughout the articular cartilage. The NH2-terminal fragments of DMP1, BSP, and OPN are present in the cells and in the extracellular matrix, whereas the COOH-terminal fragment of DMP1 and the NH2-terminal fragment of DSPP are primarily intracellularly localized in the chondrocytes. The presence of the SIBLING family members in the rat femoral head cartilage suggests that they may play important roles in chondrogenesis. (J Histochem Cytochem 58:1033–1043, 2010

    Expression of FAM20C in the Osteogenesis and Odontogenesis of Mouse

    No full text
    Mutations in FAM20C were recently identified as the cause of lethal osteosclerotic bone dysplasia, which highlighted the important role of this molecule in biomineralization. No systematic studies have been performed to evaluate the expression pattern of this relatively new molecule in the developmental processes of bone and tooth. In the present study, we analyzed in detail the expression profile of FAM20C during osteogenesis and odontogenesis using ISH and IHC approaches. The specimens analyzed were mouse tissues spanning embryonic day 13.5 (E13.5) to postnatal 8 weeks. The earliest presence of FAM20C was observed at E14.5. During osteogenesis, FAM20C mRNA was detected in the chondrocytes and osteoblasts of the long bone, whereas its protein was observed in the extracellular matrix (ECM) of bone and in the cytoplasm of the chondrocytes, osteoblasts, and osteocytes. During odontogenesis, FAM20C mRNA was detected in the ameloblasts, odontoblasts, cementoblasts, and periodontal ligament fibroblasts, whereas its protein was observed in the matrices of dentin, enamel, and alveolar bone and in the cytoplasm of the aforementioned cells. The temporospatial expression profile revealed in this study indicates that FAM20C is an ECM protein that may play an important role in controlling the mineralization of bone and tooth. (J Histochem Cytochem 58:957–967, 2010

    A serum microRNA sequence reveals fragile X protein pathology in amyotrophic lateral sclerosis

    No full text
    Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS

    Drug Interactions in the Gastrointestinal Tract and Their Impact on Drug Absorption and Systemic Availability: A Mechanistic Review

    No full text

    Evolution of advanced technologies in prostate cancer radiotherapy

    No full text

    Pharmacology of Antimalarial Drugs, Current Anti-malarials

    No full text
    corecore