5,378 research outputs found

    Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment

    Full text link
    To explain both the OPERA experiment and all the known phenomenological constraints/observations on Lorentz violation, the Background Dependent Lorentz Violation (BDLV) has been proposed. We study the BDLV in a model independent way, and conjecture that there may exist a "Dream Special Relativity Theory", where all the Standard Model (SM) particles can be subluminal due to the background effects. Assuming that the Lorentz violation on the Earth is much larger than those on the interstellar scale, we automatically escape all the astrophysical constraints on Lorentz violation. For the BDLV from the effective field theory, we present a simple model and discuss the possible solutions to the theoretical challenges of the OPERA experiment such as the Bremsstrahlung effects for muon neutrinos and the pion decays. Also, we address the Lorentz violation constraints from the LEP and KamLAMD experiments. For the BDLV from the Type IIB string theory with D3-branes and D7-branes, we point out that the D3-branes are flavour blind, and all the SM particles are the conventional particles as in the traditional SM when they do not interact with the D3-branes. Thus, we not only can naturally avoid all the known phenomenological constraints on Lorentz violation, but also can naturally explain all the theoretical challenges. Interestingly, the energy dependent photon velocities may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde

    High-Energy gamma-ray Astronomy and String Theory

    Full text link
    There have been observations, first from the MAGIC Telescope (July 2005) and quite recently (September 2008) from the FERMI Satellite Telescope, on non-simultaneous arrival of high-energy photons from distant celestial sources. In each case, the highest energy photons were delayed, as compared to their lower-energy counterparts. Although the astrophysics at the source of these energetic photons is still not understood, and such non simultaneous arrival might be due to non simultaneous emission as a result of conventional physics effects, nevertheless, rather surprisingly, the observed time delays can also fit excellently some scenarios in quantum gravity, predicting Lorentz violating space-time "foam" backgrounds with a non-trivial subluminal vacuum refractive index suppressed linearly by a quantum gravity scale of the order of the reduced Planck mass. In this pedagogical talk, I discuss the MAGIC and FERMI findings in this context and I argue on a theoretical model of space-time foam in string/brane theory that can accommodate the findings of those experiments in agreement with all other stringent tests of Lorentz invariance. However, I stress the current ambiguities/uncertainties on the source mechanisms, which need to be resolved first before definite conclusions are reached regarding quantum gravity foam scenarios.Comment: 34 pages latex, 12 eps figures incorporated, uses special macros. Based on invited plenary talk at DICE 2008 Conference (Castiglioncello, Italy), September 22-26 200

    Stringy Space-Time Foam and High-Energy Cosmic Photons

    Full text link
    In this review, I discuss briefly stringent tests of Lorentz-violating quantum space-time foam models inspired from String/Brane theories, provided by studies of high energy Photons from intense celestial sources, such as Active Galactic Nuclei or Gamma Ray Bursts. The theoretical models predict modifications to the radiation dispersion relations, which are quadratically suppressed by the string mass scale, and time delays in the arrival times of photons (assumed to be emitted more or less simultaneously from the source), which are proportional to the photon energy, so that the more energetic photons arrive later. Although the astrophysics at the source of these energetic photons is still not understood, and such non simultaneous arrivals, that have been observed recently, might well be due to non simultaneous emission as a result of conventional physics effects, nevertheless, rather surprisingly, the observed time delays can also fit excellently the stringy space-time foam scenarios, provided the space-time defect foam is inhomogeneous. The key features of the model, that allow it to evade a plethora of astrophysical constraints on Lorentz violation, in sharp contrast to other field-theoretic Lorentz-violating models of quantum gravity, are: (i) transparency of the foam to electrons and in general charged matter, (ii) absence of birefringence effects and (iii) a breakdown of the local effective lagrangian formalism.Comment: 26 pages Latex, 4 figures, uses special macros. Keynote Lecture in the International Conference "Recent Developments in Gravity" (NEB14), Ioannina (Greece) June 8-11 201

    Mortality benefit of beta-blockade after successful elective percutaneous coronary intervention

    Get PDF
    AbstractObjectivesThe goal of this study was to evaluate the mortality benefit of beta-blockers after successful percutaneous coronary intervention (PCI).BackgroundBeta-blockers reduce mortality after myocardial infarction (MI), though limited data are available regarding their role after successful PCI.MethodsEach year from 1993 through 1999, the first 1,000 consecutive patients undergoing PCI were systematically followed up. Patients presenting with acute or recent MI, shock, or unsuccessful revascularization procedures were excluded from the analysis. Clinical, procedural, and follow-up data of beta-blocker-treated and non-beta-blocker-treated patients were compared. A multivariate survival analysis model using propensity analysis was used to adjust for heterogeneity between the two groups.ResultsOf the 4,553 patients, 2,056 (45%) were treated with beta-blockers at the time of the procedure. Beta-blocker therapy was associated with a mortality reduction from 1.3% to 0.8% at 30 days (p = 0.13) and a reduction from 6.0% to 3.9% at one year (p = 0.0014). This survival benefit of beta-blockers was independent of left ventricular function, diabetic status, history of hypertension, or history of MI. Using propensity analysis, beta-blocker therapy remained an independent predictor for one-year survival after PCI (hazard ratio, 0.63; 95% confidence interval, 0.46 to 0.87; p = 0.0054).ConclusionsWithin this large prospective registry, beta-blocker use was associated with a marked long-term survival benefit among patients undergoing successful elective percutaneous coronary revascularization

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio

    An Alternative Interpretation of Statistical Mechanics

    Get PDF
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests interesting possibilities for developing non-equilibrium statistical mechanics and investigating inter-theoretic answers to the foundational questions of statistical mechanics

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio

    GLAST and Lorentz violation

    Full text link
    We study possible Lorentz violations by means of gamma-ray bursts (GRB) with special focus on the Large Array Telescope (LAT) of GLAST. We simulate bursts with gtobssim and introduce a Lorentz violating term in the arrival times of the photons. We further perturb these arrival times and energies with a Gaussian distribution corresponding to the time resp. energy resolution of GLAST. We then vary the photon flux in gtobssim in order to derive a relation between the photon number and the standard deviation of the Lorentz violating term. We conclude with the fact that our maximum likelihood method as first developed in [1] is able to make a statement whether Nature breaks the Lorentz symmetry if the number of bursts with known redshifts is of the order of 100.Comment: 13 pages, 8 figures and 2 tables, Accepted for publication by JCAP after a couple of revision

    A dual-chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions

    Get PDF
    Biomass burning (BB) is a major source of atmospheric pollutants. Field and laboratory studies indicate that secondary organic aerosol (SOA) formation from BB emissions is highly variable. We investigated sources of this variability using a novel dual-smog-chamber method that directly compares the SOA formation from the same BB emissions under two different atmospheric conditions. During each experiment, we filled two identical Teflon smog chambers simultaneously with BB emissions from the same fire. We then perturbed the smoke with UV lights, UV lights plus nitrous acid (HONO), or dark ozone in one or both chambers. These perturbations caused SOA formation in nearly every experiment with an average organic aerosol (OA) mass enhancement ratio of 1.78 ± 0.91 (mean ± 1σ). However, the effects of the perturbations were highly variable ranging with OA mass enhancement ratios ranging from 0.7 (30% loss of OA mass) to 4.4 across the set of perturbation experiments. There was no apparent relationship between OA enhancement and perturbation type, fuel type, and modified combustion efficiency. To better isolate the effects of different perturbations, we report dual-chamber enhancement (DUCE), which is the quantity of the effects of a perturbation relative to a reference condition. DUCE values were also highly variable, even for the same perturbation and fuel type. Gas measurements indicate substantial burn-to-burn variability in the magnitude and composition of SOA precursor emissions, even in repeated burns of the same fuel under nominally identical conditions. Therefore, the effects of different atmospheric perturbations on SOA formation from BB emissions appear to be less important than burn-to-burn variability

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
    • …
    corecore