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Abstract

Abstract: In this paper I propose an interpretation of classical statistical mechanics that centers on
taking seriously the idea that probability measures represent complete states of statistical mechanical
systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is
associated directly with the observables of the theory rather than with the microstates (as traditional
accounts would have it). The usual assumption that microstates are representationally significant in
the theory is therefore dispensable, a consequence which suggests interesting possibilities for develop-
ing non-equilibrium statistical mechanics and investigating inter-theoretic answers to the foundational
questions of statistical mechanics.

1 Introduction
A common lament in the literature on the foundations of statistical mechanics is the lack of a canoni-
cal formalism on which to base foundational discussions. Unlike in non-relativistic quantum mechanics,
general relativity, or classical mechanics, “what we find in [statistical mechanics] is a plethora of differ-
ent approaches and schools, each with its own programme and mathematical apparatus, none of which
has a legitimate claim to be more fundamental than its competitors” (Frigg, 2008, 101). Because of
this, “the philosophical foundations of thermodynamics and statistical mechanics can seem a bewildering
labyrinth” writes Callender (2011, 83), and, indeed, it seems to many workers in the field that “we have
no choice but to dwell on its history” (Uffink, 2007, 923) when investigating these foundations.

While that history has indeed witnessed many approaches to foundational questions, a recurring ten-
sion emerges in a considerable number of the debates, thematically emphasized throughout Sklar’s panop-
tic survey of the field, Physics and Chance. In statistical mechanics there seems to be a dilemma between
preserving some thermodynamic regularity or fact exactly, and insuring that the theory describes indi-
vidual microscopic systems (Sklar, 1993; Callender, 2001). Choosing the first horn has usually led to
the adoption of an ‘ensemble’ concept of statistical mechanics, which evokes “the imaginative picture
of an innumerably vast number of systems, all subject to the same macroscopic constraint and taking on
the infinite variety of possible microscopic states compatible with those constraints” (Sklar, 1993, 159).
Choosing the second usually leads to giving up the exact laws in favor of a statistical regularities, in order
to preserve the idea that each individual system has an exact microstate.1
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As many commentators have noted, the ensemble interpretation of statistical mechanics makes it
unclear how statistical mechanics can explain the behavior of individual systems. This has emboldened
many philosophers and some physicists to favor the latter, so-called ‘Boltzmannian’, approach. Yet there
is an alternative, which has received scant attention from philosophers, that parts ways with the two
horns of Sklar’s dilemma. This interpretation takes seriously the idea that statistical mechanical states
are correctly and completely described by probability measures. While this is to some extent already
assumed in both the ensemble and Boltzmannian interpretations, something distinct is meant, namely,
that statistical mechanical systems have individual states (as in the Boltzmannian interpretation) but that
these states are fully represented in the theory by probability measures (as in the ensemble interpretation).
It is then but a small step from this conception of state to the idea that the real, physical stochasticity of
statistical mechanical systems is located in the behavior of macroscopic observables (as I will show).

Furthermore, it follows directly from the stochasticity of the observables that one cannot consistently
conceive of statistical mechanical systems in the Boltzmannian way on this interpretation, that is, as
possessing deterministically-evolving, microscopic, mechanical states in addition to the macroscopic state
represented by a probability measure. I emphasize that this is not to say that this ‘stochastic observables’
interpretation is an instrumentalist interpretation of the theory. Plausibly there is always a microscopic
state of any statistical mechanical system, one that is properly explicated in a more fundamental theory
(like quantum mechanics). Indeed, my proposal of this interpretation is importantly motivated by the
idea that the foundations of statistical mechanics is best explored inter-theoretically rather than intra-
theoretically (as it is in traditional interpretations), for example, by investigating the classical limit of
quantum systems.2

One of my principal contentions through advocating this alternative interpretation is that one should
simply forgo interpreting microstates as necessarily representing an underlying particle ontology of clas-
sical statistical mechanics. I stress that this interpretation does not preclude the possibility of some sta-
tistical mechanical systems appropriately reducing to classical systems of particles (in some limit). In
certain circumstances reasonable cases can be and have been made. My charge is that assuming that they
do in all cases is unwarranted, particularly given what we presently know about microscopic physics.

To be sure, the basic thought behind my proposal is not entirely novel. Similar views have been sug-
gested before, most notably by Prigogine.3). The core idea of Prigogine’s program is to model statistical
mechanical systems with probability distributions, as I wish to do, but he additionally aims to character-
ize their dynamics directly in terms of such distributions. While there is no doubt that Prigogine and his
followers have made many technical contributions to statistical mechanics, it does seem that the interpre-
tation of their work remains less than fully transparent (Bishop, 2004). Although I see affinities between
some of their statements and my own view, in proposing this interpretation here I do not necessarily share
their motivations, such as, for example, trying to ‘explain’ the arrow of time dynamically or incorporating
chaos and stability considerations into the theory. My motivations are squarely centered on philosophical
concerns, particularly having to do with the interpretation of probabilities in statistical mechanics and
what ramifications alternative interpretations might have for developments of the theory.

I note also that a similar view is suggested by Krylov (1979), whose motivations are perhaps closer to
mine in that he disputes the a priori adoption of the classical state as fundamental in statistical mechanics.
However, I do not agree with his arguments that an interpretation of statistical mechanics with such states
is impossible as a matter of principle. Unfortunately Krylov died before he could develop his positive
proposal, so it is not clear how much the proposal suggested here has in common with how Krylov’s

2000; Loewer, 2001; North, 2010; Meacham, 2010); see also (Uffink, 2011) for a friendly and thorough review of subjectivist
interpretations.

2This general point of view has been urged especially by Wallace (2001, 2015).
3See (Prigogine, 1996) for a popular account of his views and (Prigogine, 1962) for an early statement of the core ideas of

his program. Useful discussion of the work of Prigogine’s group can be found in (Batterman, 1991; Sklar, 1993; Bricmont, 1996;
Bishop, 2004).
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approach might be developed.4

Apart from the discussion of the relatively well-known specific proposals of Prigogine and Krylov,
the general view which I advocate here is discussed in the philosophical literature, as far as I am aware,
only by Sklar (1993, 7.IV.2, 9.III.1). Sklar pejoratively calls it the ‘radical’ or ‘revisionist’ ontological
approach. He appears to take Prigogine as the main source of the interpretation and most of his substantive
concerns address Prigogine’s idiosyncratic views. Where his concerns touch on the general proposal,
specifically on the renouncing of an ontological reification of statistical mechanical microstates, he mostly
gives irrelevant or question begging arguments. For example, he claims that “denying the existence of the
exact pointlike micro-state is neither necessary nor sufficient to solve our ultimate theoretical problems”
(Sklar, 1993, 366). So it is—but who would claim so much? By the same token, neither is reifying
exact pointlike microstates necessary or sufficient to do the same. Sklar also repeats a point made by
Batterman, that “nothing short of [a] bona fide no-hidden-variables proof can genuinely compel one to
give up the concept of an exact state” (Batterman, 1991, 260). To this point I say: one is very welcome
to set the standard of one’s dogmatism wherever one likes, but insisting on it is certainly no argument
against an alternative. Finally, Sklar calls the denial of such states a “radical proposal for revising our
basic ontology” (Sklar, 1993, 363). Yet, our present basic ontology surely does not come from classical
particle mechanics; the world is, if anything, fundamentally quantum mechanical, so no revision of our
‘basic ontology’ is required at all.5

One might wave off this last observation, pointing out that the same issues in classical statistical
mechanics arise in quantum statistical mechanics. There is a crucial difference between the theories,
however: a quantum statistical state is nothing more than a particular quantum state, whereas a classical
statistical state is something quite different from a classical mechanical state. It is true that physicists
write quantum statistical states as if they were probabilistic weightings of pure quantum states. Never-
theless, it is crucial to recognize that a probabilistic weighting of pure quantum states is itself just a kind
of quantum state; a probabilistic weighting of classical mechanical states is, by contrast, plainly not a
classical mechanical state. For precisely this reason there can be no fundamental intra-theoretic question
about the relation of macro- and microstates within quantum statistical mechanics, as there can be in clas-
sical statistical mechanics. Accordingly, I confine further discussion to classical statistical mechanics and
set aside quantum statistical mechanics, the interpretation of which is a matter of interpreting quantum
mechanics in general.

The main body of the paper proceeds as follows: Since there is a strong default presumption against
the kind of view I am advocating, I first prepare the way by arguing that a view like mine should in
fact be favored by default over the traditional ones on general methodological grounds (§2). Then I
discuss the possibilities of characterizing the stochasticity of statistical mechanics, showing how various
interpretations can be suggested by the formalism of the theory, including the view which I advocate (§3).
I next address potential concerns with my account centering on the representational significance of phase
space. In responding to these concerns, I argue that some structure of phase space, particularly phase
points, should be interpreted instrumentally in statistical mechanics (§4), using as an example the phase
space formulation of quantum mechanics, where quantum states are representable on phase space despite
not possessing precise classical microstates. In §5 show how a commitment to a fundamental ontology
of classical particles can coherently be avoided by treating statistical mechanics as a ‘special science’
(Callender, 2011) with a structuralist ontology. I conclude with some suggestions of potentially fruitful
extensions of these ideas, for example, to non-equilibrium statistical mechanics and quantum mechanics.

4See (Batterman, 1990) and (Sklar, 1993, 7.III.5) for philosophical assessments of Krylov’s work.
5Sklar does raise an objection that deserves attention. He questions how a proposal like mine can deal with the results of the

spin echo experiment. While I do not believe examples like this threaten my proposal when the results are suitably interpreted, it
is far too specific of an example to address in a programmatic paper like this one, so its treatment (and the treatment of similar
troublesome cases like Brownian motion) is best left for another paper.
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2 Interpreting Classical Statistical Mechanics
It is widely presumed that the foundations of statistical mechanics is an enterprise centrally concerned
with completing the project of the theory’s founders, namely, of reducing thermodynamics to the me-
chanical motion of atoms and molecules (Sklar, 1993; Lebowitz, 1999; Callender, 1999, 2001; Frigg,
2008; Hemmo and Shenker, 2012)—“naught but molecules in motion,” in Maxwell’s memorable phrase.
In discussions of classical statistical mechanics, whether in foundational contexts or otherwise, philoso-
phers and physicists alike invariably adopt (in some way or another) the traditional presupposition of a
classical ontology of particles that move about in space. After all, since the formal framework of classical
statistical mechanics is ‘built on top of’ that of classical particle mechanics, it seems completely natural to
appropriate the particulate manner of speaking from the latter. In most popular interpretations, moreover,
individual statistical mechanical systems are presumed to possess a classical mechanical state (a ‘mi-
crostate’) that evolves deterministically and has determinate physical properties, just as such microstates
do in classical particle mechanics.

The notion that microstates and their attendant ontological interpretation play an important role in
statistical mechanical systems is a common denominator of the foundations of statistical mechanics, even
despite the oft-acknowledged diversity of approaches taken in the field. From Boltzmannian-inspired
approaches, according to which individual statistical mechanical systems possess individual microstates,
to the ensemble interpretation, according to which a system’s macroscopic state is a probabilistically-
weighted infinite ensemble of classical mechanical microstates, nearly all ascribe some interpretive sig-
nificance to microstates and the presumed classical ontology thereof.

Statistical mechanical probabilities themselves are traditionally introduced to classical particle me-
chanics by associating probability distributions to particular aggregations of microstates. In general I will
call such probability distributions macrostates because of the particular role they play in the theory: the
state dynamics operates on them, and, in concert with the relevant observables, they completely represent
the predictable content of statistical mechanics in the form of statistics (expectation values, variances,
etc.).

To forestall confusion which this characterization might invite, a few more words on what is meant
here by a state (in the context of a probabilistic theory) is necessary. In classical mechanics the state of the
system plays the roles just mentioned: the state dynamics operates on it, and it represents the predictable
empirical content of the theory. But it also plays another role: it specifies that actual properties that the
system possesses at that time. However, these roles can come apart (to some extent) in a probabilistic the-
ory. The former roles are more significant theoretically for picking out the state of a system, which is why
I choose to call probability distributions macrostates in statistical mechanics. The latter role is important
only for specifying the empirical history of the system, that is, the temporal sequence of that system’s
realized, observable properties. One might well call this collection of properties a state too, but it does
not play the other roles in statistical mechanics, except derivatively. Furthermore, the determination of a
system’s macroproperties cannot, in general, specify its ‘statistical state’. For this reason such a statistical
state (macrostate, in my terminology) cannot be thought of as a compact description of a system’s actual
properties (it might instead be thought of as a compact description of its observables’ ‘potentialities’).

Individual microstates, in contrast to macrostates, are essentially irrelevant to making predictions in
the theory, as well they should, since it is generally supposed that individual systems’ precise microstates
are epistemically inaccessible. This is a basic assumption of statistical mechanics.6 The most cited reason
for making this assumption is that quintessential statistical mechanical systems have a large number of
degrees of freedom, such that it is (at least) practically impossible to adequately determine their classical

6Although some textbooks do not explicitly mention the term ‘microstate’, those that do often point out this fundamental
epistemic assumption: “A macroscopic physical object contains so many molecules that no one can hope to find its dynamical state
by observation” (Penrose, 1970, 2); “The definition [of microstate] requires one to know the initial positions and velocities of all n
particles and to follow these motions for all time. Since n is typically of the order of 1024, this is of course impossible” (Ellis, 2006,
65).
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microstates. If these microstates were epistemically accessible, then probabilities would simply not have
to be introduced in the theory and we would be able to use classical mechanics to describe such systems
(at least in principle).

So, on the one hand, macrostates (and hence the probabilities associated with them) tell us every-
thing we can theoretically know about a system’s predictable empirical content (from the point of view
of statistical mechanics), while having no consequences at all for the behavior of the postulated indi-
vidual microstates (microstates are understood to evolve deterministically and, therefore, in ignorance
of this probabilistic element). On the other hand, microstates, representing as they do the complete mi-
crophysical properties of a system according to the prevailing view, determine (ontologically speaking)
the system’s macroproperties (which are presumed to reduce to microproperties), but they cannot deter-
mine the correct probability distribution to assign to a system, as such a probability distribution assigns
probabilities to a collection of (almost entirely non-actual) microstates. In traditional interpretations of
statistical mechanics (at least those which ontologically reify microstates) this duality in state concept
is often said to be puzzling.7 Some clarification is clearly required to dissolve the conceptual tension
between macrostates and microstates if such interpretations are to be successful. Indeed, recognition of
this challenge has led, among other things, to numerous efforts at establishing a philosophical account of
‘deterministic chance’ to help resolve it (Bradley, 2017).8

Given this basic conundrum, it is worth pausing and asking ourselves: Why should we bother with
positing an ontology of classical particles at all? Why do so when such a posit is not only well beyond
our epistemic reach (in principle even!) but, more importantly, creates significant interpretive difficulties?
I do not think there are ready answers to these questions, despite the widespread predilection towards this
particular basic ontology in statistical mechanics. As far as I can see, its assumption is poorly justified.
Indeed, it seems to me that there should even be a (defeasible) prejudice against it.

Here is one argument to encourage the intuition that something is amiss in the traditional approach. I
take it to be a plausible methodological principle, one which certainly admits exceptions, that ‘ontology
recapitulate epistemology’. This slogan is meant to evince some (slight) degree of anti-metaphysical
‘positivism’ in scientific metaphysics, by mandating acceptance of unobservable entities only when we
have substantive empirically-based reasons to believe that they exist. Perhaps the entities are in some
sense ‘essential’ in explaining an empirical phenomenon, for example. In this vein, I note that since a
non-fundamental theory may be micro-ontologically multiply-realized, it is not enough to demonstrate a
handful of cases where a particular microscopic ontology fits the theory and then claim that the theory
therefore has that microscopic ontology in all cases.

The interpretive stance which holds that statistical mechanical microstates in all cases faithfully rep-
resent actual configurations of classical particles flagrantly flouts this principle, particularly given the
degree of empirical inaccessibility of the supposed classical microstates and also given the fact that we
regard quantum mechanics as ultimately fundamental. For the sake of scientific respectability, the mi-
crostate reifier must take on the burden of explaining why the ontology of statistical mechanics diverges
from the epistemology of statistical mechanics. One has an easy answer if one takes probabilities to be
merely epistemic, but for those that take probabilities to be ontic the task is not an easy one. I certainly do
not wish to suggest that such explanations cannot be provided—indeed there are many extant accounts of
variable respectability—but I do insist that having to take on this burden is a significant interpretive cost
in comparison to a view that does not create such interpretive problems from the start.

The interpretation which I advocate conceives of the foundations of statistical mechanics as concerned
with something other than its traditional historical project. The starting point is to observe that the theory

7For example, “if the laws are deterministic then the initial conditions of the universe together with the laws entail all facts—at
least all facts expressible in the vocabulary of the theory. But if that is so there is no further fact for a probability statement to be
about” (Loewer, 2001, 610); “The fundamental problem with understanding the probabilities in statistical mechanics to be objective
is that we are meant to posit a probability distribution over a set of possible initial states, while we suppose, at the same time, that
in fact only one of these initial states actually obtained” (Winsberg, 2008, 873).

8See (McCoy, 2018a) for a critique of many of these accounts.
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of statistical mechanics is about statistical mechanical systems: all those systems, like boxes of gas and
finite regions of the early universe, that are well-described by the formal framework and concrete inter-
pretive resources of the theory. In my view the theory describes systems in terms of statistical mechanical
states—probability measures—and stochastic observables, the combination of which can be used to de-
rive accurate statistical predictions of observational macroscopic outcomes. For this reason we have good
reason to take seriously the interpretational significance of probability measures and observables—but
not of microstates. Furthermore, there is no analogous mystery of what probability is doing in the theory
as there is in the traditional ontic accounts. Probability measures merely represent the actual or apparent
stochastic nature of statistical mechanical systems, which fact is responsible for the statistical observable
outcomes of such systems. If one wants an explanation of the origin of this stochasticity (if such is even
possible), it will have to come from another, more fundamental theory; in statistical mechanics it is a
fundamental postulate.

Thus, on the basis of what should, I think, strike philosophers of science as reasonable metaphysical
policy in the sciences, my proposed interpretation should come out somewhat ahead of the traditional
ontological presuppositions. I certainly do not take this to be a decisive point against other interpretations.
There are, as said, reputable responses to the tension caused by reifying microstates. My project in this
section is simply to push back against an unreasonable default presumption in favor of the traditional
ontological stance, a presumption which has prevented a view like the one I am proposing to have a fair
hearing. I have urged that there is a reasonable motivation for the basic idea of the interpretation, insofar
as one accepts the plausible methodological principle that ontology should recapitulate epistemology. Of
course, if inclination is to turn into acceptance, it must rest on the interpretation’s precise details, to which
I now turn.

3 Probability in Statistical Mechanics
A perspicuous interpretation of a probabilistic theory should tell us what probabilities do in the theory.
Statistical mechanics incorporates probability theory as a way of deriving statistical predictions of ob-
servables. Precisely how probability is formally implemented in the the theory is quite flexible, however.
There exist alternatives which identify the probabilistic structure of the theory differently, by identifying
different objects to which probability numbers are attached and different elements of the framework as
random variables. To be sure, there is a common view on the matter: probabilities attach to microstates
of the system and observables are random variables. This common view informs the interpretation of
the theory. My aim in this section is to demonstrate that there exist perspicuous alternatives to the stan-
dard view based on two modifications: (1) one where probabilities are understood to attach to observable
outcomes, and (2) one where microstates are understood as random variables.

Before satisfying this aim, I should say a few things about the interpretation of probability in order to
avoid any confusion about the scope of my discussion. “How are probabilities in statistical mechanics to
be understood?” is, after all, surely among the most persistent questions in the philosophy of statistical
mechanics. Especially in recent years, there have been many studies that have taken up this interpreta-
tional question.9 The usual approach taken is investigating whether some one of the familiar so-called
‘interpretations of probability’ makes sense of the application of probability in the theory. On the whole,
the conclusions of these various studies have not been encouraging. Certainly some accounts of proba-
bility receive more attention than others, yet the debate continues and there remains a distinct lack of real
consensus on the physical, metaphysical, and conceptual significance of the theory’s probabilities.

Therefore I adopt a restricted approach to the interpretation of probability in order to avoid this
morass. I also wish to avoid any distraction over the ‘meaning’ or ‘nature’ of probability, so for present

9See, for example, (Sklar, 1993; von Plato, 1994; Guttmann, 1999; Clark, 2001; Lavis, 2001; van Lith, 2001; Emch, 2005;
Uffink, 2007; Frigg, 2008; Winsberg, 2008; Meacham, 2010; Myrvold, 2016).
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purposes I will take probability in physics to be essentially a theoretical concept (Sklar, 1979), like
‘Hamiltonian’ or ‘gauge transformation’. By an ‘interpretation of probability’ (in a specific physical
theory) I will intend something much narrower than usual, namely, an account of what is randomly deter-
mined. I refer to such an account as an account of the theory’s stochasticity. Such an account should give
answers to (at least) the following two questions:

1. To what are probabilities attached in the theory?

2. What are the random variables in the theory?

The alternative interpretation of statistical mechanics which I propose locates the stochasticity of the
theory in the system’s observables: that is, the observable properties of the system are what is random
about a statistical mechanical system. This interpretation can be usefully understood as stating that proba-
bilities are attributed to observable outcomes, where the observables are treated as random variables on the
space of possible observable outcomes. The precise significance of these statements will emerge below.
Already one can discern that according to this interpretation one must reject (on pain of contradiction) the
idea that the microstate of the system is the instantaneous state of a large collection of deterministically
evolving particles. Accordingly, one must take seriously the idea that probability measures represent the
complete physical states of individual statistical mechanical systems.

The scope of this latter claim should not be misunderstood. Probability measures only represent
the physical states of individual statistical mechanical systems qua statistical mechanical systems. I
emphasize again that there may be other accurate descriptions of the system in the terms of a more
fundamental microphysical theory. Indeed, depending on one’s reductive inclinations, there perhaps must
be. It is not my brief to take a stand here on precisely what inter-theoretic relations there may be between
statistical mechanics and more fundamental theories like quantum mechanics. I do wish to point out,
though, that this interpretive view directs attention precisely to investigating such relations.

At this point I choose to limit the scope of the discussion to equilibrium statistical mechanics for the
sake of simplicity and perspicuity. As said, statistical mechanics encompasses a fairly diverse array of
approaches and formalisms, each of which raises difficult and distracting complications, particularly in the
non-equilibrium case. Rather than attempt to navigate this labyrinth in all of its disorienting complexity,
I hope that the case for an alternative interpretation of probability made on the basis of equilibrium
statistical mechanics alone will suffice. The astute reader, I trust, will be able to see, if even only dimly,
how the idea sketched in the following might be generalized beyond the strictures adopted here.

To flesh out the details of the various implementations of probability and their interpretations, it is
useful to adopt a simple, general formalism for equilibrium statistical mechanics. The state and empirical
content of a statistical mechanical system can be described by three things: a phase space Γ, a (macro)state
ρ, and a set of observables A. Most approaches to equilibrium statistical mechanics can be made to fit
this basic formal framework. The notion of a phase space is borrowed from classical particle mechanics,
where it is the complete state space of some classical mechanical system. Encoded in a classical particle
state x of Γ is the spatial configuration of all individual particles as well as their states of motion, that is,
their positions as well as their momenta. As already noted, in statistical mechanics the elements x of Γ are
also referred to as microstates, and they are usually interpreted further as representing the epistemically-
inaccessible but real underlying microstates of the system. The macrostate ρ is a probability distribution
Γ → [0, 1], and the observables A1, A2, A3, . . . in A are random variables on Γ, usually represented
as maps Γ → R. These observables represent macroscopic properties of the system, for example its
temperature and energy.

A statistical mechanical system described in this way is easily made into a probability space, where
Γ is the sample space, the set of events L is conveniently taken to be the set of (Lebesgue) measurable
subsets of Γ, and ρ is used to define a probability measure µρ via

µρ(U) =

∫
U
ρ dΓ, (1)
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where U is an element of L, and Lebesgue integration is with respect to the natural volume element dΓ

on Γ.
Let us now focus on the representation of the empirical content of statistical mechanics. This content

is given by statistics of the observables, that is, expectation values, variances, and so on (Wallace, 2015).
In the case of equilibrium statistical mechanics we do not have to worry about the temporal behavior of
observables or macrostates. So, the expectation value 〈A〉 of an observable A is given simply by treating
A as a random variable on Γ associated to the probability measure µρ:

〈A〉ρ =

∫
Γ

ρ A dΓ. (2)

Inspecting this expression, one should observe that probabilities are associated to microstates (the domain
of ρ is Γ) and observables are treated as random variables on phase space (A : Γ → R). To compute
the expectation value one integrates over the A’s values at each point in phase space weighted by the
probability associated to that point by ρ. But what exactly about the system is random? Is it something
about the microstates or something about the observables? Surely the answer to this question is not given
merely by inspection. Some interpretive work is required to explain what is happening physically.

One interpretation, common to Boltzmannian approaches to the subject, is that any statistical me-
chanical system possesses in addition to its macrostate ρ a classical microstate x(t) (at each time t)
which evolves deterministically and determines all of the system’s properties, as in classical particle
mechanics. The only thing that could be random about a statistical mechanical system which is also a
deterministically-evolving classical mechanical system with properties determined by its microstate is
its initial microstate x0. In other, more evocative words, for any statistical mechanical system, there is
(or was) a ‘random trial’ that determined the initial microstate x0 of that system. This state then de-
termines the system’s entire evolution and all its observable properties for all time, just as in classical
particle mechanics.10 Hence, on this interpretation probabilities are in fact properly attached to initial
microstates and are the real random variables of the theory, as observables are fully determined by the
actual microstate and are not (directly) a matter of chance.

A second interpretation is possible, another one where microstates represent the state of a system of
particles. In this version, however, microstates do not evolve deterministically. Instead, the microstate
is itself taken to be the locus of stochasticity. As in the Boltzmannian approach, one takes the system’s
properties to be completely determined by the microstate, exactly like observables in particle mechanics.
This idea can be made more manifest by explicitly representing the microstate as a random variable on
phase space. Formally, define a random variable X : Γ → Γ on phase space that is just the identity map.
Then the expectation value of an observable can be written

〈A〉ρ =

∫
Γ

ρ (A ◦ X) dΓ. (3)

In this case probabilities attach to microstates (now at all times, not just initial times) and are, again,
properly the real random variables of the theory.11

The third possible interpretation of the expectation value of equation (2) is the one I advocate: the
observables themselves are the locus of stochasticity. According to this interpretation, probabilities are
properly attached to observable outcomes, not microstates (as in the other two interpretations). Indeed,
as I have remarked, to make sense of this interpretation one has to give up on the idea that statistical

10I do not insist, of course, that this initial random trial entails a realist commitment. One may certainly interpret initial chances
in a Humean way, for example, as in (Albert, 2000; Loewer, 2001).

11This view may perhaps be read into some statements in the physics literature. For example: “as time passes, the system
continually switches from one microstate to another, with the result that, over a reasonable span of time, all one observes is a
behavior ‘averaged’ over the variety of microstates through which the system passes” (Pathria, 1996, 30). While this story is,
strictly speaking, consistent with the first interpretation, with some imagination it evokes the second interpretation as well.
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mechanical systems possess deterministically evolving classical microstates. This is because the sys-
tem would have contradictory observable properties if it did possess such a microstate: the observables
realized through the stochastic process and the observables determined by the microstate.

Cue the hue and cry: “Radicalism!” “Revisionism!” “How can anyone seriously maintain an inter-
pretation of statistical mechanics that eschews microstates,” especially given the “variety and consilience
of evidence” (as a referee put it) for discrete, microscopic entities well-described by classical particle
mechanics? “Does he somehow aim to repudiate the atomic hypothesis with hand-waving talk of ‘ob-
servables’ and ‘stochasticity’?”

My goodness, of course not! Yet, hyperbole aside, I do admit that there are serious worries along the
lines of these complaints which deserve some response in brief.12

Firstly, I believe people grossly overestimate the import of the alleged body of evidence for discrete,
microscopic entities. That such entities exist is a metaphysical conclusion, for which empirical evidence
can hardly be decisive. It is true that when we are able to sufficiently isolate some small part of a system
we often find that we can describe it as a system of a small number of bodies. Yet it is a significant (and
unwarranted) inductive leap to suppose that that same description applies to the whole undifferentiated
system. Indeed, taking this leap lands one directly into the interpretive hot water discussed above. Of
course one might retreat from the heat to a subjectivist interpretation of probability in order to uniformly
maintain a microscopic ontology of particles. For those who wish to hang on to the physicality of statis-
tical mechanical probabilities, however, it is difficult to see how such probabilities can matter for ‘large
numbers of particles’ and not for ‘small numbers of particles’. A benefit of my proposal is that it avoids
what can seemingly only be an arbitrary or gerrymandered resolution of this tension.

Secondly, we now understand that the atomic hypothesis ultimately requires a quantum interpretation.
So, if there is to be an explanation of the success of classical statistical mechanics, it should come from
a quantum mechanical description of the system and not from classical particle mechanics. That said,
I reavow my lack of commitment to whether such a reductive explanation is possible, at least for the
purposes of this paper. An interpretation of statistical mechanics, such as my proposal, does not require
an explanation of the theory’s success. It is enough if it gives a picture of how the theory describes and
explains the phenomena within its purview.

The picture my proposal provides may also strike some as puzzling for reasons having to do with
that picture itself. For example, since expectation values are computed by explicitly quantifying over
microstates in equation (2), it may seem like phase space is doing some important representational work.
This objection is easily deflected, since one need not make any realist commitment to phase space. In the
first place, insofar as one thinks that realism is not an all or nothing affair with respect to the elements
of a given formal framework, one is well within one’s rights to interpret some aspects of a theory’s
formalism instrumentally. A selective realist may be completely satisfied to interpret phase space and its
microstates as ontologically insignificant structure, while taking seriously macrostates and observables as
representing real structure. The objector likely would wish to see a justification for treating phase space
in such a deflationary way of course, so I supply this in the following section. Before turning to that,
though, I think it is worthwhile to demonstrate that this burden of explaining away phase space is not
really forced upon one advocating the ‘stochastic observables’ interpretation.

It is not a burden because it is possible to mold the above formalism somewhat so that the interpreta-
tion of observables as stochastic becomes even more manifest and phase space disappears. This formal
modification is not at all necessary, but it is perhaps instructive. Just as one can treat phase space as a
probability space and the microstate as a random variable on this space (as in the second interpretation
from above), one can treat the image set of any observable as a probability space and the observable
outcomes as random variables on these spaces. By this mild subterfuge one can remove all reference to
phase space and its microstates.

12I gratefully acknowledge two reviewers for pressing the various (serious) concerns to which I give my initial responses in the
following paragraphs.
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Given the probability space (Γ,L, ρ), it is trivial to construct these spaces. Let A be an observable of
a statistical mechanical system. The measurable space associated with it is the image set A[Γ] of A with
measurable sets LA = {A[U]}, for elements U in L. Let ρ be the state of the system with respect to the
measurable space (Γ,L). The state ρA of the system with respect to measurable space (A[Γ],LA) is given
by A∗ρ, the pushforward of ρ under A. You can think of this map as using A to pull back measurable sets
of the image set of the observable to Γ and then using ρ to compute the set’s probability.

One now has constructed a new probability space (A[Γ],LA, ρA). Expectation values of the system
are then computed according to the following formula:

〈A〉ρA =

∫
A[Γ]

ρA A dA. (4)

The statistics predicted from formalizing statistical mechanics in this way, on probability spaces A[Γ]
of observables, is identical to the statistics predicted from formalizing it on phase space (as a probability
space). It is so by construction. Moreover, this set of probability spaces manifestly suggests the stochastic
observable interpretation, an interpretation which is perhaps less apparent in the standard phase space
formulation. In this interpretation probabilities are clearly attached to observable outcomes, and those
observable outcomes are treated as random variables. Together they formally represent the stochasticity
of the observables and thereby the stochasticity of statistical mechanics.

The skeptical reader might object that the outcome probability spaces just constructed, that is, those
of the form (A[Γ],LA, ρA), are parasitic on the phase space probability space, such that the the claimed
independence from phase space has not been shown. That is not really the case, though, since one could
just as well work the other direction, namely, by choosing ρA and pulling this function back to some
abstract space, for example phase space. Certainly the pullbacks are not going to be unique in general,
but what is there to worry about? One just has to insure that the pullbacks of the set ρA = {ρA, ρB, . . . }
agree appropriately in the target space (whatever that may be, phase space or otherwise). If so, then one
has all the necessary resources to do statistical mechanics. Put this way, there is no obvious reason to
demand an explanation for why statistical mechanical systems should be represented on something other
than phase space. After all, should one demand such explanations for every possible abstract unifying
space to which one could pull back the observable measures? What makes phase space special in this
respect, other than that it is the state space of classical particle mechanics? So far as I can see, the answer
is “nothing much at all.”

4 Phase Space and Statistical Mechanics
Despite all I have said, I suspect many may feel that there is a deep significance in the fact that statistical
mechanics is generally formulated on phase space, rather than some other abstract space that unifies the
set of observables.13 I certainly do grant that the phase space probability space is instrumentally useful,
particularly since having a single state on it unifies the observable content of the system in a single,
familiar space, one which can also be used for spatial constraints, positing particular Hamiltonians, etc. I
am happy to simply use phase space for these purposes while not taking it seriously representationally.

There are, however, two issues about phase space which still need addressing. First, I will make good
on the justification for instrumentally interpreting phase space points by presenting an analogous case
in quantum mechanics, where a phase space representation is also possible of a theory that is normally
formulated on a different abstract space, paradigmatically, a Hilbert space. Second, if phase space should
not be taken too seriously for purposes of ontological interpretation, as I suggest, then why might phase

13“In statistical mechanics, we have, [unlike the case in quantum mechanics], built into the very mathematics from which the
probability distributions are derived the underlying phase space with its pointlike representatives of exact microstates” (Sklar, 1993,
291).
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space be nonetheless a good way to represent statistical mechanical states? My answer is that phase space
has enough representational structure that it can usefully represent not only statistical mechanical states
but underlying microphysical structure as well, whatever that may be. To explain its utility in this latter
respect one would wish to have a microphysical theory that can represent its own states as probability
measures on phase space. Once again, the phase space representation of quantum mechanics affords one
precisely this possibility. Thus, there is at least one potential way to account for phase space’s utility in
statistical mechanics.

Note that classical particle mechanics, the theory typically thought of as providing the underlying mi-
crophysics of classical statistical mechanics, cannot realize general macrostates in this way, for a classical
mechanical state on phase space is merely a point in phase space. Such points cannot combine to form
objective ‘superpositions’ in the way needed to generate statistical mechanical states. Therefore, equi-
librium statistical mechanics is naturally seen as a more general theory than classical mechanics, in that
it can represent classical mechanical states probabilistically, as ‘sharply-peaked distributions’ (or ‘pure
states’), as well as a variety of other statistical states (‘mixed states’) within its scope. This turns the con-
ventional attitude on its head: statistical mechanics, from this point of view, is the more general theory of
which classical mechanics is a special case, rather than classical mechanics being the fundamental theory
to which statistical mechanics is a special (and peculiar, because of the introduction of probabilities) case.

Anyway, an essential point is that if one wishes to understand from where statistical mechanical states
come (an external question, as it were), then one should look elsewhere for the provision of appropriate
phase space representations. Classical mechanics cannot explain the requisite states. As a more fun-
damental, probabilistic theory, quantum mechanics is obviously an appealing place to look, and, as it
happens, there is a relatively well-known, straightforward, and illuminating way to represent quantum
states and operators on phase space (Kim and Noz, 1991; Case, 2008).

Let ρ be a density operator that represents a (mixed) quantum state, that is,

ρ =
∑

s

ps|Ψs〉〈Ψs|, (5)

where ps is the probabilistic weighting of a particular pure quantum state |Ψs〉 in a mixture of pure states
indexed by s. The Wigner function Wρ is a representation, a ‘smearing’, of such a quantum state ρ as a
function on phase space. It is a map Wρ : Γ→ R, which may be defined as follows:

Wρ(q, p) =
1

πN/2

∫
dΓ e−2ipx/~〈q − x | ρ | q + x〉, (6)

where local coordinates q (position) and p (momentum) have been introduced on 2N-dimensional phase
space Γ.

Quantum mechanics on phase space can also provide the means to connect quantum mechanical states
to statistical mechanical macrostates. If the Wigner function is a probability measure on phase space (it
is not necessarily so), then it may (at least formally) serve as a ‘statistical mechanical state’. Quantum
mechanical observables may be represented on phase space in a similar way to quantum mechanical states
(such transforms are called Weyl transforms), in particular as functions on phase space. Thus they may
serve statistical mechanical observables. The expectation value of an operator A, then, is simply given by
the familiar, obvious integral over phase space as in statistical mechanics:

〈A〉ρ =

∫
Γ

Wρ A dΓ. (7)

Quantum mechanics is generally formulated in such a way that some Hilbert space is the state space of
a system described by the theory. The state Ψ, for example, is an element of the Hilbert spaceH . By mak-
ing use of Wigner functions and Weyl transforms, Hilbert space quantum mechanics can be re-represented
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as a quantum theory on phase space. One is not led in this case to interpret quantum mechanical states
as possessing classical microstates which correspond to phase space points merely in virtue of a phase
space representation of quantum mechanics existing. Of course one may try to find classical microstates
in this way. However, in typical observer-independent interpretations of quantum mechanics, the putative
microstates would be treated instrumentally in quantum mechanics on phase space while the quantum
state itself would be taken as real. I suggest that what is true here with quantum mechanics is true also
with statistical mechanics. Just as phase space may be a useful representational structure in quantum
mechanics for some incidental purposes, it is useful in statistical mechanics.

I give the example of quantum mechanics on phase space not to make the case that this is precisely
how statistical mechanical states come about in general. Rather, I mean to show that phase space can
simply be a vehicle for representing underlying microphysical structure in an indirect way. Thus, one
is not forced in any way to interpret the ‘fundamental’ ontology of the theory in line with the supposed
classical particle states of phase space. There is no deep significance in the appearance of phase space
in the standard formalism of statistical mechanics. The fact that quantum mechanics is representable
on phase space, even though quantum mechanics is not necessarily a theory of classical microstates,
suffices to establish this point.14 Accordingly, it is not necessary to reformulate statistical mechanics to
avoid referring to phase space (as I did in §3). Phase space is surely of significant practical and heuristic
value in establishing the sort of inter-theoretic relations which are needed to illuminate the foundations
of statistical mechanics. It does not, however, implicate a particular intra-theoretical ontological relation
between microstates and macrostates. To suppose that it does is simply to make an interpretive mistake
about representational structure.15

5 Alternative Foundations
In traditional interpretations of statistical mechanics some intra-theoretical foundational relationship is
assumed between statistical mechanics and classical mechanics (Wallace, 2017). One common idea is
to treat classical particle mechanics as if it were a fundamental theory—at least as more fundamental
than classical statistical mechanics—and statistical mechanics as a ‘higher level’ theory that successfully
describes a particular set of phenomena—thermodynamic phenomena—despite epistemic limitations in
accessibility to the ‘lower level’ details.16 It is also sometimes supposed, however, that statistical me-
chanics is a fundamental theory of sorts, and that the probabilities are somehow objective features of an
otherwise classical mechanical world of particles moving in space (Albert, 2000; Loewer, 2001).

As I have been urging, the assumption of a necessary relationship between classical and statistical
mechanics in such ways should strike us as somewhat odd: the world is, so far as we know, quantum me-
chanical and not classical mechanical.17 There is a multitude of possible inter-theoretic relations between

14“In quantum mechanics, the mathematical apparatus posits no further underlying ‘point’ phase space state of the system beyond
the probability distribution. Indeed, classical phase space is rejected altogether and is replaced by a phase space in which the
mathematical representatives of the probability distributions (or, rather, the probability amplitudes from which the probability
distributions are constructed by multiplying one of them by its complex conjugate—Hilbert space vectors) are the ‘atoms’ ” (Sklar,
1993, 291).

15Here is a good point to note a relevant objection raised by a referee, the substance of which is that, as the Hamiltonian of a
system governs the motion of the particles of the system, it gives a reason to endorse the reality of the particles it governs. On
my proposal the Hamiltonian is not so understood; it instead governs the time evolution of the statistical state of a system and also
serves as an observable giving the value of the energy of the system. Of course, Hamiltonians are usually defined on phase space.
However, just as they induce a flow on phase space, they also induce a flow on the space of probability distributions associated to that
phase space. So, by essentially the same argument that phase space need not be interpreted realistically, that is, as indicating particle
content in the theory, I argue too that the Hamiltonian need not indicate it either. Consider too that the utility of Hamiltonians in
quantum mechanics does not indicate that there are classical particles underlying the quantum wave function description.

16‘Mechanics is a completely general theory, that is it ought to give a complete description of any physical situation to which it
applies’ (Clark, 2001, 271).

17‘Why should we consider quantum issues when working in the foundations of statistical physics? The simple (too simple)
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quantum mechanics, statistical mechanics, and classical mechanics to consider besides two simplistic
reductions: statistical mechanics to classical mechanics, classical mechanics to quantum mechanics. As-
suming that the ontological foundation of classical statistical mechanics is the same as found in classical
particle mechanics not only faces the epistemological challenge raised in §2, but it has also become un-
necessary since the advent of quantum mechanics, as there are other potential ways of grounding the
theory in one that is more fundamental.

A key virtue of the interpretation of statistical mechanics which I am advocating is that it avoids any
unwarranted commitment to a particular underlying ontology and foundation for the theory in classical
particle mechanics. Besides the complaints mentioned in the introduction, Sklar finds this ‘revisionist’
approach to the ontology of statistical mechanics objectionable also because it fails to complete the his-
torical project of statistical mechanics. For example, he claims that “denying the existence of the exact
micro-states...doesn’t seem to help us at all in resolving the most crucially puzzling questions such as
those centered around the origin of time-asymmetry” (Sklar, 1993, 366). On the contrary, denying the
necessity of a particle ontology for statistical mechanics can help solve some crucial and puzzling ques-
tions, in particular by re-directing foundational efforts from a fruitless search for explanations mired in
overly classical thinking to other avenues of explanation based on our best philosophical understanding
of current physics, much of which is quantum mechanical. Some popularly debated questions do fall
by the wayside if one adopts my proposal, namely, those that depend on the traditional ontological sup-
positions. Yet avoiding unnecessary ontological commitments does not force one to be agnostic about
foundational matters. Rather the interpretation encourages the fruitful and entirely sensible reorientation
of foundational investigations into statistical mechanics from the intra-theoretic to the inter-theoretic.

No doubt severing the traditional firm connection between statistical mechanics and classical me-
chanics leaves us with some questions. How can a probability measure represent the state of a system?
How can this alternative interpretation coherently avoid a commitment to some particular foundational
viewpoint? To some extent these questions have already been essentially answered by my discussion, but
for lingering doubters I offer a couple of connections to recent philosophical work which may usefully
illuminate the account further.

As urged especially by Callender, one appealing way to understand statistical mechanics is as a ‘spe-
cial science’ (Callender, 1997; Callender and Cohen, 2010; Callender, 2011). For Callender statistical
mechanics is a theory like those found in biology or economics:

It’s a new special science, one that grounds and unifies a lot of macroscopic behavior. It
too is restricted to certain kinds of systems, in this case macroscopic systems whose energy
and entropy are approximately extensive. (Surely a better characterization can be given, but
this will do for now.) The claim is that the [statistical mechanical] probabilities only kick in
when we have systems meeting such a description. Once they develop, one uses [statistical
postulates] to great effect. But one does not use it to describe and explain the frequency
with which such systems develop in the first place. The science of statistical mechanics is
about systems with certain features. Yet it’s no part of the science to say anything about the
frequencies of these systems themselves. (Callender, 2011, 110)

In this vein, it is a job for another theory with greater explanatory resources to account for the particular
actual states of the theory that arise in the world. Indeed, it may be a job for other theories, since it is
certainly open that the probability measures which serve as statistical mechanical states may connect to
microscopic structures (including classical particles) in a variety of ways. In any case, it is essentially by
treating statistical mechanics as a special science that the stochastic observables interpretation avoids an
unnecessary commitment to a particular intrinsic foundation.

answer is that classical physics is false. If our purpose, in doing foundational work, is to understand the actual world, it is necessary
to use a theory which validly describes that world’ (Wallace, 2001, 1).
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Structuralism encourages the further view that it is unnecessary to posit any additional primitive
ontology for the theory over and above the structure given by the theory itself. Structuralism, in its most
benign form, should not be seen as an effort to ‘get rid of’ ontology altogether but rather as an effort to
proof our metaphysical thinking of naive ontological prejudices.18 Such prejudices can impede progress
in understanding the foundations of physics and may even impede physics beyond foundational matters.
As Cao (2003, 5-6) observes, “an ontological commitment made in a scientific discipline also dictates its
theoretical structure and the direction of its evolution.”

An ontological commitment to classical particles dictated the theoretical structure of statistical me-
chanics and has since dictated the direction of its evolution both within physics (including, to some
extent, quantum statistical mechanics) and within philosophy. However, we now know much more about
microphysics than the founders of the theory, and a foundational account that presupposes their ontology
should by now be seen as the depreciated metaphysical fiction of a former time (which admittedly was and
to some extent remains of significant heuristic value however!). The alternative account proposed here
provides one coherent starting point to move forward beyond it in our philosophical and foundational
endeavors.

Thus, it is in a structuralist way that I suggest one understand probability measures as statistical
mechanical states. At the level of description of physical systems captured by statistical mechanics there is
an unavoidable stochastic element which is naturally represented mathematically by probability measures.
This is what it means, roughly, to take probability measures seriously as statistical mechanical states,
with the probabilities representing the stochasticity of the system’s macroscopic observables. In much
the same way that one can characterize quantum states as probability measures, one can also understand
statistical states as probability measures (more easily, in fact, since classical observables commute). The
metaphysical upshot of such probabilistic interpretations is that there is an interesting stochasticity in
the world, at least at the level of description captured by those theories. The revisionism encapsulated
by these interpretations is a profound metaphysical discovery, which should provoke further thought and
investigation and not a retreat to a reversionism which attempts to preserve the traditional ontological
bygones.

I close by suggesting that the adoption of this interpretation opens up many new possibilities for
foundational and philosophical work. I will mention only a couple; the reader perhaps can envision more.
First, the possibilities of interpreting statistical mechanics sketched in §3 suggests interesting connec-
tions to the interpretation of quantum mechanics and the measurement problem. There are analogies
between popular interpretations of quantum mechanics and these ways of interpreting the stochasticity of
statistical mechanics and its statistical predictions, some of which are more or less known, others which
remain to be explored.19 Second, taking probability measures seriously as statistical mechanical states
also makes it very clear that the Hamiltonian dynamics of classical particle mechanics is inappropriate
for describing the dynamics of non-equilibrium statistical mechanics. Since the action of a Hamiltonian
defined on phase space on probability measures defined on phase space is non-dissipative, no statistical
mechanical state will ever approach equilibrium. Although particle-based intuitions lead to empirically
successful non-equilibrium equations of motion like the Fokker-Planck equation (Kadanoff, 2000, Ch. 6),
the interpretation I advocate suggests viewing these intuitions as merely heuristic. This interpretation may
therefore suggest novel ways of understanding the utility of such equations in non-equilibrium statistical
mechanics.20

18“We are not ’anti-ontology’ in the sense of urging a move away from electrons, elementary particles etc. and towards ‘observ-
able structures’ or the S-matrix or whatever; rather, we urge the reconceptualization of electrons, elementary particles and so forth
in structural instead of individualistic terms” (French and Ladyman, 2003, 37).

19See (McCoy, 2018b) for an exploration of the interpretive analogies between statistical mechanics and quantum mechanics,
including a discussion of how the measurement problem and primitive ontology figure into these analogies.

20Such philosophical work would apparently be of use to physicists as well: “These equations are just convenient to use; we
know how to use them but do not fully understand why they can be so useful” (Ma, 1986, 367).
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