1,864 research outputs found

    Aerodynamic analysis of several high throat Mach number inlets for the quiet clean short-haul experimental engine

    Get PDF
    The results of an analytical study to investigate internal and external surface Mach numbers on several inlet geometries for possible application to the nacelle of the Quiet Clean Short-Haul Experimental Engine (QCSEE) are presented. The effects of external forebody geometry and internal lip geometry were illustrated at both low-speed and cruise conditions. Boundary-layer analyses were performed on several geometries to determine if lip flow separation might exist. The results indicated that inner-surface Mach number level and gradient could be reduced with inlets at a 50 deg incidence angle by blunting the external forebody geometry. The external Mach numbers at cruise conditions indicated that a compromise in the external forebody bluntness might be required to satisfy both low-speed and cruise conditions. For a fixed value of bluntness parameter, no lip flow separation was indicated for the 1.46- and 1.57-area-contraction-ratio inlets at low-speed conditions. However, a lip separation condition was obtained with the 1.37-contraction-ratio inlet. The QCSEE nacelle design takeoff operating condition (incidence angle of 50 deg and free-stream Mach number of 0.12) resulted in higher peak surface Mach numbers than the design crosswind (incidence angle of 90 deg and free-stream Mach number of 0.05) or static condition

    Greedy Selfish Network Creation

    Full text link
    We introduce and analyze greedy equilibria (GE) for the well-known model of selfish network creation by Fabrikant et al.[PODC'03]. GE are interesting for two reasons: (1) they model outcomes found by agents which prefer smooth adaptations over radical strategy-changes, (2) GE are outcomes found by agents which do not have enough computational resources to play optimally. In the model of Fabrikant et al. agents correspond to Internet Service Providers which buy network links to improve their quality of network usage. It is known that computing a best response in this model is NP-hard. Hence, poly-time agents are likely not to play optimally. But how good are networks created by such agents? We answer this question for very simple agents. Quite surprisingly, naive greedy play suffices to create remarkably stable networks. Specifically, we show that in the SUM version, where agents attempt to minimize their average distance to all other agents, GE capture Nash equilibria (NE) on trees and that any GE is in 3-approximate NE on general networks. For the latter we also provide a lower bound of 3/2 on the approximation ratio. For the MAX version, where agents attempt to minimize their maximum distance, we show that any GE-star is in 2-approximate NE and any GE-tree having larger diameter is in 6/5-approximate NE. Both bounds are tight. We contrast these positive results by providing a linear lower bound on the approximation ratio for the MAX version on general networks in GE. This result implies a locality gap of Ω(n)\Omega(n) for the metric min-max facility location problem, where n is the number of clients.Comment: 28 pages, 8 figures. An extended abstract of this work was accepted at WINE'1

    Flexibele arbeid: juridische aspecten

    Get PDF
    Economics; Labou

    A survey of low-velocity collisional features in Saturn's F ring

    Get PDF
    Small (~50km scale), irregular features seen in Cassini images to be emanating from Saturn's F ring have been termed mini-jets by Attree et al. (2012). One particular mini-jet was tracked over half an orbital period, revealing its evolution with time and suggesting a collision with a local moonlet as its origin. In addition to these data we present here a much more detailed analysis of the full catalogue of over 800 F ring mini-jets, examining their distribution, morphology and lifetimes in order to place constraints on the underlying moonlet population. We find mini-jets randomly located in longitude around the ring, with little correlation to the moon Prometheus, and randomly distributed in time, over the full Cassini tour to date. They have a tendency to cluster together, forming complicated `multiple' structures, and have typical lifetimes of ~1d. Repeated observations of some features show significant evolution, including the creation of new mini-jets, implying repeated collisions by the same object. This suggests a population of <~1km radius objects with some internal strength and orbits spread over 100km in semi-major axis relative to the F ring but with the majority within 20km. These objects likely formed in the ring under, and were subsequently scattered onto differing orbits by, the perturbing action of Prometheus. This reinforces the idea of the F ring as a region with a complex balance between collisions, disruption and accretion.Comment: 21 pages, 12 figures. Accepted for publication in Icarus. Supplementary information available at http://www.maths.qmul.ac.uk/~attree/mini-jets

    Probability of local bifurcation type from a fixed point: A random matrix perspective

    Full text link
    Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as universal approximators (neural networks). The eigenvalue spectra is considered both numerically and analytically using previous work of Edelman et. al. Based upon the numerical evidence, various conjectures are presented. The conclusion is that in many circumstances, most bifurcations from fixed points of large dynamical systems will be due to complex eigenvalues. Nevertheless, surprising situations are presented for which the aforementioned conclusion is not general, e.g. real random matrices with Gaussian elements with a large positive mean and finite variance.Comment: 21 pages, 19 figure

    Spectral Properties of delta-Plutonium: Sensitivity to 5f Occupancy

    Full text link
    By combining the local density approximation (LDA) with dynamical mean field theory (DMFT), we report a systematic analysis of the spectral properties of δ\delta-plutonium with varying 5f5f occupancy. The LDA Hamiltonian is extracted from a tight-binding (TB) fit to full-potential linearized augmented plane-wave (FP-LAPW) calculations. The DMFT equations are solved by the exact quantum Monte Carlo (QMC) method and the Hubbard-I approximation. We have shown for the first time the strong sensitivity of the spectral properties to the 5f5f occupancy, which suggests using this occupancy as a fitting parameter in addition to the Hubbard UU. By comparing with PES data, we conclude that the ``open shell'' 5f55f^{5} configuration gives the best agreement, resolving the controversy over 5f5f ``open shell'' versus ``close shell'' atomic configurations in δ\delta-Pu.Comment: 6 pages, 2 embedded color figures, to appear in Physical Review

    Deliberating Our Frames : How Members of Multi-Stakeholder Initiatives Use Shared Frames to Tackle Within-Frame Conflicts Over Sustainability Issues

    Get PDF
    Multi-stakeholder initiatives (MSIs) have been praised as vehicles for tackling complex sustainability issues, but their success relies on the reconciliation of stakeholders’ divergent perspectives. We yet lack a thorough understanding of the micro-level mechanisms by which stakeholders can deal with these differences. To develop such understanding, we examine what frames—i.e., mental schemata for making sense of the world—members of MSIs use during their discussions on sustainability questions and how these frames are deliberated through social interactions. Whilst prior framing research has focussed on between-frame conflicts, we offer a different perspective by examining how and under what conditions actors use shared frames to tackle ‘within-frame conflicts’ on views that stand in the way of joint decisions. Observations of a deliberative environmental valuation workshop and interviews in an MSI on the protection of peatlands—ecosystems that contribute to carbon retention on a global scale—demonstrated how the application and deliberation of shared frames during micro-level interactions resulted in increased salience, elaboration, and adjustment of shared frames. We interpret our findings to identify characteristics of deliberation mechanisms in the case of within-frame conflicts where shared frames dominate the discussions, and to delineate conditions for such dominance. Our findings contribute to an understanding of collaborations in MSIs and other organisational settings by demonstrating the utility of shared frames for dealing with conflicting views and suggesting how shared frames can be activated, fostered and strengthened

    A general lower bound for collaborative tree exploration

    Full text link
    We consider collaborative graph exploration with a set of kk agents. All agents start at a common vertex of an initially unknown graph and need to collectively visit all other vertices. We assume agents are deterministic, vertices are distinguishable, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (knk \leq \sqrt n) and large (knk \geq n) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains. First, we significantly extend a lower bound of Ω(logk/loglogk)\Omega(\log k / \log\log k) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range knlogcnk \leq n \log^c n for any cNc \in \mathbb{N}. Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with k=Dn1+o(1)k = Dn^{1+o(1)} agents has a competitive ratio of ω(1)\omega(1), while Dereniowski et al. gave an algorithm with k=Dn1+εk = Dn^{1+\varepsilon} agents and competitive ratio O(1)O(1), for any ε>0\varepsilon > 0 and with DD denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using k=nk = n agents, there exist trees of arbitrarily large height DD that require Ω(D2)\Omega(D^2) rounds, and we provide a simple algorithm that matches this bound for all trees
    corecore