research

Aerodynamic analysis of several high throat Mach number inlets for the quiet clean short-haul experimental engine

Abstract

The results of an analytical study to investigate internal and external surface Mach numbers on several inlet geometries for possible application to the nacelle of the Quiet Clean Short-Haul Experimental Engine (QCSEE) are presented. The effects of external forebody geometry and internal lip geometry were illustrated at both low-speed and cruise conditions. Boundary-layer analyses were performed on several geometries to determine if lip flow separation might exist. The results indicated that inner-surface Mach number level and gradient could be reduced with inlets at a 50 deg incidence angle by blunting the external forebody geometry. The external Mach numbers at cruise conditions indicated that a compromise in the external forebody bluntness might be required to satisfy both low-speed and cruise conditions. For a fixed value of bluntness parameter, no lip flow separation was indicated for the 1.46- and 1.57-area-contraction-ratio inlets at low-speed conditions. However, a lip separation condition was obtained with the 1.37-contraction-ratio inlet. The QCSEE nacelle design takeoff operating condition (incidence angle of 50 deg and free-stream Mach number of 0.12) resulted in higher peak surface Mach numbers than the design crosswind (incidence angle of 90 deg and free-stream Mach number of 0.05) or static condition

    Similar works