477 research outputs found
Nitrogen forms affect root structure and water uptake in the hybrid poplar
The study analyses the effects of two different forms of nitrogen fertilisation (nitrate and ammonium) on root structure and water uptake of two hybrid poplar (Populus maximowiczii x P. balsamifera) clones in a field experiment. Water uptake was studied using sap flow gauges on individual proximal roots and coarse root structure was examined by excavating 18 whole-root systems. Finer roots were scanned and analyzed for architecture. Nitrogen forms did not affect coarse-root system development, but had a significant effect on fine-root development. Nitrate-treated trees presented higher fine:coarse root ratios and higher specific root lengths than control or ammonium treated trees. These allocation differences affected the water uptake capacity of the plants as reflected by the higher sapflow rate in the nitrate treatment. The diameter of proximal roots at the tree base predicted well the total root biomass and length. The diameter of smaller lateral roots also predicted the lateral root mass, length, surface area and the number of tips. The effect of nitrogen fertilisation on the fine root structure translated into an effect on the functioning of the fine roots forming a link between form (architecture) and function (water uptake)
Effect of Inhibition of the Lysophosphatidic Acid Receptor 1 on Metastasis and Metastatic Dormancy in Breast Cancer
Background Previous studies identified the human nonmetastatic gene 23 (NME1, hereafter Nm23-H1) as the first metastasis suppressor gene. An inverse relationship between Nm23-H1 and expression of lysophosphatidic acid receptor 1 gene (LPAR1, also known as EDG2 or hereafter LPA1) has also been reported. However, the effects of LPA1 inhibition on primary tumor size, metastasis, and metastatic dormancy have not been investigated. Methods The LPA1 inhibitor Debio-0719 or LPA1 short hairpinned RNA (shRNA) was used. Primary tumor size and metastasis were investigated using the 4T1 spontaneous metastasis mouse model and the MDA-MB-231T experimental metastasis mouse model (n = 13 mice per group). Proliferation and p38 intracellular signaling in tumors and cell lines were determined by immunohistochemistry and western blot to investigate the effects of LPA1 inhibition on metastatic dormancy. An analysis of variance-based two-tailed t test was used to determine a statistically significant difference between treatment groups. Results In the 4T1 spontaneous metastasis mouse model, Debio-0719 inhibited the metastasis of 4T1 cells to the liver (mean = 25.2 liver metastases per histologic section for vehicle-treated mice vs 6.8 for Debio-0719-treated mice, 73.0% reduction, P < .001) and lungs (mean = 6.37 lesions per histologic section for vehicle-treated mice vs 0.73 for Debio-0719-treated mice, 88.5% reduction, P < .001), with no effect on primary tumor size. Similar results were observed using the MDA-MB-231T experimental pulmonary metastasis mouse model. LPA1 shRNA also inhibited metastasis but did not affect primary tumor size. In 4T1 metastases, but not primary tumors, expression of the proliferative markers Ki67 and pErk was reduced by Debio-0719, and phosphorylation of the p38 stress kinase was increased, indicative of metastatic dormancy. Conclusion The data identify Debio-0719 as a drug candidate with metastasis suppressor activity, inducing dormancy at secondary tumor site
Recommended from our members
Working relationships between obstetric care staff and their managers: a critical incident analysis
Background
Malawi continues to experience critical shortages of key health technical cadres that can adequately respond to Malawi’s disease burden. Difficult working conditions contribute to low morale and frustration among health care workers. We aimed to understand how obstetric care staff perceive their working relationships with managers.
Methods
A qualitative exploratory study was conducted in health facilities in Malawi between October and December 2008. Critical Incident Analysis interviews were done in government district hospitals, faith-based health facilities, and a sample of health centres’ providing emergency obstetric care. A total of 84 service providers were interviewed. Data were analyzed using NVivo 8 software.
Results
Poor leadership styles affected working relationships between obstetric care staff and their managers. Main concerns were managers’ lack of support for staff welfare and staff performance, lack of mentorship for new staff and junior colleagues, as well as inadequate supportive supervision. All this led to frustrations, diminished motivation, lack of interest in their job and withdrawal from work, including staff seriously considering leaving their post.
Conclusions
Positive working relationships between obstetric care staff and their managers are essential for promoting staff motivation and positive work performance. However, this study revealed that staff were demotivated and undermined by transactional leadership styles and behavior, evidenced by management by exception and lack of feedback or recognition. A shift to transformational leadership in nurse-manager relationships is essential to establish good working relationships with staff. Improved providers’ job satisfaction and staff retentionare crucial to the provision of high quality care and will also ensure efficiency in health care delivery in Malawi
Protein appetite at the interface between nutrient sensing and physiological homeostasis
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state
Individual tree and stand-level carbon and nutrient contents across one rotation of loblolly pine plantations on a reclaimed surface mine
While reclaimed loblolly pine (Pinus taeda L.) plantations in east Texas, USA have demonstrated similar aboveground productivity levels relative to unmined forests, there is interest in assessing carbon (C) and nutrients in aboveground components of reclaimed trees. Numerous studies have previously documented aboveground biomass, C, and nutrient contents in loblolly pine plantations; however, similar data have not been collected on mined lands. We investigated C, N, P, K, Ca, and Mg aboveground contents for first-rotation loblolly pine growing on reclaimed mined lands in the Gulf Coastal Plain over a 32-year chronosequence and correlated elemental rates to stand age, stem growth, and similar data for unmined lands. At the individual tree level, we evaluated elemental contents in aboveground biomass components using tree size, age, and site index as predictor variables. At the stand-level, we then scaled individual tree C and nutrients and fit a model to determine the sensitivity of aboveground elemental contents to stand age and site index. Our data suggest that aboveground C and nutrients in loblolly pine on mined lands exceed or follow similar trends to data for unmined pine plantations derived from the literature. Diameter and height were the best predictors of individual tree stem C and nutrient contents (R ≥ 0.9473 and 0.9280, respectively) followed by stand age (R ≥ 0.8660). Foliage produced weaker relationships across all predictor variables compared to stem, though still significant (P ≤ 0.05). The model for estimating stand-level C and nutrients using stand age provided a good fit, indicating that contents aggrade over time predictably. Results of this study show successful modelling of reclaimed loblolly pine aboveground C and nutrients, and suggest elemental cycling is comparable to unmined lands, thus providing applicability of our model to related systems
Multi-modal neo-adjuvant anti-obesity medications may be more effective than medically supervised weight loss or GLP-1 therapy alone in preparing BMI ≥ 70 patients for metabolic surgery
Background/objectives: Optimizing patients with a body mass index (BMI) ≥ 70 kg/m² for metabolic surgery (MS) is challenging. However, pre-operative weight loss may be important for improving the safety of MS for these high-risk patients. Multi-modal anti-obesity medications (mmAOM) may enhance preoperative weight loss compared to non-pharmacologic medically supervised weight loss (NP-MSWL) or glucagon-like peptide-1 receptor agonist monotherapy (Mono-GLP-1) alone. Subjects/methods: This retrospective study analyzed 113 patients with BMI ≥ 70 kg/m² at a single metabolic disease treatment institute. Interventions/methods: Patients were categorized into NP-MSWL (n = 13), Mono-GLP-1 (n = 54), and mmAOM (n = 46) groups. The primary outcome was mean percent total body weight loss (%TBWL). Secondary outcomes included %TBWL across time intervals (0–23, 23–51, 51–88, and 88+ weeks). Results: The mmAOM group achieved the highest average - 13.07% - and median (9.93% [5.57–14.29]) %TBWL; followed by Mono-GLP-1 (5.58% [0.98–10.19]); and NP-MSWL (5% [2.97–7.02]). Significant differences among groups were confirmed by Kruskal-Wallis test (p = 0.0047). The highest median %TBWL was at 51–88 weeks (10.25 [6.49–16.45]) (p = 0.0093). Conclusions: mmAOM treatment yields the highest %TBWL, especially within the first 51 weeks of preoperative preparation, demonstrating superior efficacy over Mono-GLP-1 and NP-MSWL in patients with BMI ≥ 70 kg/m². These findings suggest that incorporating mmAOM in preoperative protocols could optimize weight loss and improve surgical outcomes for high BMI patients
Overlooked branch turnover creates a widespread bias in forest carbon accounting
Significance
Net primary production of forests, a major land carbon flux, is estimated in the field as the sum of biomass increment, i.e., net growth of live biomass over time, and biomass turnover, i.e., the production of biomass replacing loss through mortality. Despite its importance in forest carbon dynamics, both measurements and models have largely overlooked turnover of branch biomass in live trees. Synthesizing field-based data across global biomes and incorporating branch turnover in state-of-the-art models, our study demonstrates that the prevailing neglect of branch turnover leads to widespread biases in carbon flux estimates across global datasets and model simulations. Modifications to field measurement protocols and model simulations are needed to eliminate the systematic biases in projection of land carbon dynamics.
Abstract
Most measurements and models of forest carbon cycling neglect the carbon flux associated with the turnover of branch biomass, a physiological process quantified for other organs (fine roots, leaves, and stems). Synthesizing data from boreal, temperate, and tropical forests (184,815 trees), we found that including branch turnover increased empirical estimates of aboveground wood production by 16% (equivalent to 1.9 Pg Cy−1 globally), of similar magnitude to the observed global forest carbon sinks. In addition, reallocating carbon to branch turnover in model simulations reduced stem wood biomass, a long-lasting carbon storage, by 7 to 17%. This prevailing neglect of branch turnover suggests widespread biases in carbon flux estimates across global datasets and model simulations. Branch litterfall, sometimes used as a proxy for branch turnover, ignores carbon lost from attached dead branches, underestimating branch C turnover by 38% in a pine forest. Modifications to field measurement protocols and existing models are needed to allow a more realistic partitioning of wood production and forest carbon storage
Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?
Optimization theory in combination with canopy modeling is potentially a powerful tool for evaluating the adaptive significance of photosynthesis-related plant traits. Yet its successful application has been hampered by a lack of agreement on the appropriate optimization criterion. Here we review how models based on different types of optimization criteria have been used to analyze traits—particularly N reallocation and leaf area indices—that determine photosynthetic nitrogen-use efficiency at the canopy level. By far the most commonly used approach is static-plant simple optimization (SSO). Static-plant simple optimization makes two assumptions: (1) plant traits are considered to be optimal when they maximize whole-stand daily photosynthesis, ignoring competitive interactions between individuals; (2) it assumes static plants, ignoring canopy dynamics (production and loss of leaves, and the reallocation and uptake of nitrogen) and the respiration of nonphotosynthetic tissue. Recent studies have addressed either the former problem through the application of evolutionary game theory (EGT) or the latter by applying dynamic-plant simple optimization (DSO), and have made considerable progress in our understanding of plant photosynthetic traits. However, we argue that future model studies should focus on combining these two approaches. We also point out that field observations can fit predictions from two models based on very different optimization criteria. In order to enhance our understanding of the adaptive significance of photosynthesis-related plant traits, there is thus an urgent need for experiments that test underlying optimization criteria and competing hypotheses about underlying mechanisms of optimization
Investigation of the Acetylation Mechanism by GCN5 Histone Acetyltransferase
The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes
Counseling patients about sexual health when considering post-prostatectomy radiation treatment
Prostate cancer is the second most frequently diagnosed cancer in men in the United States. Many men with clinically localized prostate cancer survive for 15 years or more. Although early detection and successful definitive treatments are increasingly common, a debate regarding how aggressively to treat prostate cancer is ongoing because of the effect of aggressive treatment on the quality of life, including sexual functioning. We examined current research on the effect of post-prostatectomy radiation treatment on sexual functioning, and suggest a way in which patient desired outcomes might be taken into consideration while making decisions with regard to the timing of radiation therapy after prostatectomy
- …
