2,729 research outputs found

    The converse of Schur's Lemma in group rings

    Get PDF
    In this paper, we study the structure of group rings by means of endomorphism rings of their modules. The main tools used here, are the subrings fixed by automorphisms and the converse of Schur's lemma. Some results are obtained on fixed subrings and on primary decomposition of group rings

    Perfect rings for which the converse of Schur's lemma holds

    Get PDF
    If M is a simple module over a ring R then, by the Schur's lemma, the endomorphism ring of M is a division ring. However, the converse of this result does not hold in general, even when R is artinian. In this short note, we consider perfect rings for which the converse assertion is true, and we show that these rings are exactly the primary decomposable ones

    Fence-sitters Protect Cooperation in Complex Networks

    Get PDF
    Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. In complex networks, because of the difficulty of formulating the replicator dynamics, most of previous studies are confined to a numerical level. In this paper, we introduce a vectorial formulation to derive three classes of individuals' payoff analytically. The three classes are pure cooperators, pure defectors, and fence-sitters. Here, fence-sitters are the individuals who change their strategies at least once in the strategy evolutionary process. As a general approach, our vectorial formalization can be applied to all the two-strategies games. To clarify the function of the fence-sitters, we define a parameter, payoff memory, as the number of rounds that the individuals' payoffs are aggregated. We observe that the payoff memory can control the fence-sitters' effects and the level of cooperation efficiently. Our results indicate that the fence-sitters' role is nontrivial in the complex topologies, which protects cooperation in an indirect way. Our results may provide a better understanding of the composition of cooperators in a circumstance where the temptation to defect is larger.Comment: an article with 6 pages, 3 figure

    Emergence of Cooperation in Non-scale-free Networks

    Get PDF
    Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a Prisoner's Dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.Comment: 6 pages, 5 figure

    Weakly coupled two slow- two fast systems, folded node and mixed mode oscillationsM

    Full text link
    We study Mixed Mode Oscillations (MMOs) in systems of two weakly coupled slow/fast oscillators. We focus on the existence and properties of a folded singularity called FSN II that allows the emergence of MMOs in the presence of a suitable global return mechanism. As FSN II corresponds to a transcritical bifurcation for a desingularized reduced system, we prove that, under certain non-degeneracy conditions, such a transcritical bifurcation exists. We then apply this result to the case of two coupled systems of FitzHugh- Nagumo type. This leads to a non trivial condition on the coupling that enables the existence of MMOs

    A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection-diffusion equations

    Get PDF
    We analyse a non-conforming finite-element method to approximate advection-diffusion-reaction equations. The method is stabilized by penalizing the jumps of the solution and those of its advective derivative across mesh interfaces. The a priori error analysis leads to (quasi-)optimal estimates in the mesh size (sub-optimal by order ½ in the L2-norm and optimal in the broken graph norm for quasi-uniform meshes) keeping the Péclet number fixed. Then, we investigate a residual a posteriori error estimator for the method. The estimator is semi-robust in the sense that it yields lower and upper bounds of the error which differ by a factor equal at most to the square root of the Péclet number. Finally, to illustrate the theory we present numerical results including adaptively generated meshe

    Deformations des feuilletages transversalement holomorphes a type differentiable fixe

    Get PDF
    Let F be a transversely holomorphic foliation on a compact manifold. We show the existence of a versal space for those deformations of F which keep fixed its differentiable type if F is hermitian or if F has complex codimension one and admits a transverse projectable connection. We also prove the existence of a versal space of deformations for the complex structures on a Lie group invariant by a cocompact subgroup
    corecore