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We analyse a non-conforming finite-element method to approximate advection—diffusion—reaction equa-
tions. The method is stabilized by penalizing the jumps of the solution and those of its advective deriva-
tive across mesh interfaces. The a priori error analysis leads to (quasi-)optimal estimates in the mesh
size (sub-optimal by order % in the L2-norm and optimal in the broken graph norm for quasi-uniform
meshes) keeping the Péclet number fixed. Then, we investigate a residual a posteriori error estimator for
the method. The estimator is semi-robust in the sense that it yields lower and upper bounds of the error
which differ by a factor equal at most to the square root of the Péclet number. Finally, to illustrate the
theory we present numerical results including adaptively generated meshes.

Keywords: non-conforming finite elements; face penalty; advection; diffusion; a posteriori error
estimator; adaptive meshes.

1. Introduction

Advection—diffusion equations in the dominant advection regime are encountered in many applica-
tions, including pollutant transport and the Navier-Stokes equations. It is well-known that the standard
Galerkin approximation of these equations leads to oscillations when layers are not properly resolved.
To stabilize this phenomenon, several well-established techniques have been proposed and analysed in
a conforming setting (e.g. streamline—diffusion, Brooks & Hughes, 1982; Johnson et al., 1984, subgrid
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viscosity, Guermond, 1999, 2001, and residual free bubbles, Brezzi & Russo, 1994) as well as in a
discontinuous setting (e.g. the discontinuous Galerkin method in Johnson & Pitkéranta, 1986).

An interesting compromise between conforming and discontinuous Galerkin methods consists of
using non-conforming finite elements. In this paper, we are interested in low-order non-conforming finite
elements such as the Crouzeix—Raviart finite element. This finite element presents various interesting
features. First, the degrees of freedom are localized at the mesh faces, thereby leading to efficient com-
munication and parallelization. Second, Crouzeix—Raviart finite elements have close links with finite-
volume box schemes; see, e.g. Courbet & Croisille (1998) and Croisille (2000) for Darcy’s equations and
El Alaoui & Ern (2006) for advection—diffusion equations. This property is useful to reconstruct locally
the diffusive flux in problems where conservativity properties are important, e.g. pollutant transport. Fi-
nally, keeping the mesh fixed, the Crouzeix—Raviart finite-element space has approximately twice fewer
degrees of freedom than the first-order discontinuous Galerkin finite-element space.

The topic of approximating advection—diffusion equations by Crouzeix—Raviart finite elements is not
new; see John et al. (1998) and Matthies & Tobiska (2001) where the streamline—diffusion paradigm
is extended to the non-conforming setting. The difficulties with streamline—diffusion, in both conform-
ing and non-conforming settings, are that the method involves a parameter depending on the diffu-
sion coefficient and that the extension to time-dependent problems is not straightforward. This can
be impractical in non-linear problems, e.g. the Navier—Stokes equations where the regions with dom-
inant convection may not be known a priori. In this paper, we consider a different technique to sta-
bilize the non-conforming finite-element approximation, namely that of penalizing the jumps of the
solution and those of its advective derivative across mesh interfaces. Drawing on earlier ideas by
Douglas & Dupont (1976), the analysis of face penalty finite-element methods has been recently ex-
tended to advection—diffusion equations with dominant advection (Burman, 2005; Burman & Hansbo,
2006) and to the Stokes equations (Burman & Hansbo, 2004); see also Ouazzi & Turek (2005) for an
application to incompressible flow problems. The advantage of using the face penalty technique rather
than streamline—diffusion is that the former involves a single user-dependent parameter which is in-
dependent of the diffusion coefficient. Moreover, the face penalty technique is readily extendable to
time-dependent problems.

The a posteriori error analysis of non-conforming finite-element approximations to advection—
diffusion equations is a much less explored topic. Even in a conforming setting, the analysis is harder
than it seems at the first sight. The main issue at stake is to derive a so-called robust error estimator for
which the upper and lower bounds for the error differ by a factor that is independent of the Péclet num-
ber. The first main advance in this direction was achieved by Verfirth (1998) in a conforming setting,
the proposed error estimator yielding a factor between lower and upper error bounds which scales at
most as the square root of the Péclet number. Such error estimators are henceforth called semi-robust.
Further results in this direction include Araya et al. (2005a,b) and Berrone (2002). Recently, robust error
estimators, still in a conforming setting, have been proposed by Verfiirth (2005) and Sangalli (2004b).
For this purpose, the norm in which the error is measured has to be modified; in particular, it includes
the advective derivative of the error. In Verfiirth (2005), the advective derivative is measured in a dual
(non-local) norm. In Sangalli (2004b), the advective derivative is measured in a non-standard interpo-
lated norm of order % introduced in Sangalli (2004a) and which can be evaluated by solving a gener-
alized eigenvalue problem on a fine mesh. The purpose of the present work is to propose and analyse
a semi-robust error estimator for non-conforming finite-element approximations to advection—diffusion
equations. To our knowledge, it is the first semi-robust error estimator in this setting. The present analy-
sis can be viewed as a first step towards establishing robust error estimators in the non-conforming
setting.
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This paper is organized as follows. Section 2 presents the model problem and the non-conforming
finite-element approximation with face penalty. Section 3 deals with the a priori error analysis and
Section 4 with the residual a posteriori error analysis. Section 5 contains numerical results and Section 6
draws the conclusions.

2. Thesetting
2.1 The model problem

Let Q be a polygonal domain of RY with Lipschitz boundary 82 and outward normal n. Let ¢ > 0,
p e [%0’%(5)]d and 8 € L*°(Q) be, respectively, the diffusion coefficient, the velocity field and the
reaction coefficient. Set 0.Qi, = {Xx € 6Q2: f-n < 0} and 0Quut = {X € 8Q: f-n > 0}. Let f € L2(Q)
and g € L2(6Qjn) be the data. We are interested in the following advection—diffusion—reaction problem
with mixed Robin—Neumann boundary conditions:

—eAU+pS-Vu+60u="F inQ,
—eVun+ gnu=g on 0Qjn, (2.1)
Vun=20 on 9 Qout.
Without loss of generality, we assume that (2.1) is non-dimensionalized so that || Blj_o(g)¢ and
the length scale of ©Q are of order unity; hence, the parameter ¢ is the reciprocal of the Péclet
number.
Under the assumption that there is o9 > 0 such that o = 0 — %V-ﬂ > opin Q and that V- €

L>°(Q), it is straightforward to verify using the Lax—Milgram Lemma that the following weak formu-
lation of (2.1) is well-posed:

seek u € H1(Q) such that
[a(u,v) =Jo fo—[o 90 VoeHY(Q), 22
where
a(u,v):/QeVu-Vu +/Q(9—V-ﬂ)uv—/Qu(,b’-Vv)+/mom(ﬂ~n)uu. (2.3)

2.2 The discrete setting

Let (9h)n be a shape-regular family of simplicial affine meshes of Q. For an element T € %, let 6T
denote its boundary, ht its diameter and set h = maxyc 4 ht. Henceforth, the notation & < ¢ means
that there is a positive ¢, independent of any mesh size and of &, such that & < c¢¢. Since the advection—
diffusion problem has been non-dimensionalized so that the field /4 is of order unity, the dependency on
£ can be hidden in the constants in the error estimates. The same is done for the function & since we are
not interested in the asymptotics of strong reaction regimes. _

Let Z, Z and Z denote, respectively, the set of faces, internal and external faces in ;. Let 7"
and ﬁ«}?”t be the set of faces belonging, respectively, to 6 Qj, and 6 Qo so that %f = ygn U %ﬁ)‘". Fora
face F € %, let hg denote its diameter and .7k the set of elements in .7, containing F. For an element
T € %, let Z71 denote the set of faces belonging to T. Let .# be the set of mesh vertices. For a vertex
S € %, let 75 denote the set of elements in %, containing s.
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For an integer k > 1, let HX(Zh) = {v € L%(Q): VT € Fh,vlr € HX(T)}. We introduce the
discrete gradient operator Vi: H(Zh) — [L?(€2)]% such that for all v € H(J}) and for all T
Fh, (Vho)lT = V(v|1). Let F € .%; then, there are Ty(F) and T2(F) € % such that F = Ty (F) N
To(F). Conventionally, choose ng to be the unit normal vector to F pointing from Ty (F) towards T2 (F).
For v € H1(.95), define its jump across F as

[ollF = vl (F) —vl1,(F) @€.0nF. (2.4)

For F € }‘ha define ng to be the unit normal to F pointing towards the exterior of Q and for v €
H1(%), set [o]lr = o|t(r) Where T (F) is the mesh element of which F is a face. A similar notation
is used for the jumps of vector-valued functions, the jump being taken componentwise.

For a measurable subset R C @, (-, -)o,r denotes the L2(R)-scalar product, I-llo,r the associated
norm, ||-|lk.r the HX(R)-norm for k > 1 and S r the [L°(R)]%-norm of the function 4.

Consider the Crouzeix-Raviart finite-element space PL.(.%) defined as (Crouzeix & Raviart, 1973)

Poc(Fh) = [vh € L2(Q):VT € Fh,onlt € PLT)VF € fh‘,/[[vh]lp = O],
F

where P1(T) denotes the vector space of polynomials on T with degree less than or equal to 1. For
further purposes, we restate some well-known results. For all vy, € Pnlc(ﬂh), forall T € .5 and for all
FcoT,

lonlluT S hFlonlloTs (2.5)

_1
lonllo,e < hg2llonlo,T, (2.6)
ITonlEllo.e S hEITVhondEllo.F- (2.7)

Let PX(Jh) = PL(Fh) N HL(LQ) be the usual first-order conforming finite-element space. Let .#os:
PL (%) — P(h) be the so-called Oswald interpolation operator (El Alaoui & Ern, 2004; Hoppe &
WohImuth, 1996) defined as follows:

1
Yon € PL(GR), Vs e S, Soson(s) = EA > onlr (), (2.8)
S TeT

where #(.7 ) denotes the cardinal number of .7;. This operator is endowed with the following approxima-
tion property (Achdou et al., 2003; Burman, 2005; Karakashian & Pascal, 2003): for all v, € Pnlc(ﬂh)
andforall T € %,

1
llon = Fosonllo.r +hr IV (on — Loson)llor < D hElTvalelloF. (2.9)
FeFos
where 9?5 denotes all the interior faces in the mesh containing a vertex of T. Using (2.7) and (2.9)
yields

3
llon — Fosonllo.T + hrlIV(on — Joson)llor < D hEILVhonTFllo.r- (2.10)

Fegf'\?s
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2.3 The discrete bilinear forms

Set V.= H?(%) N HY(Q) and V(h) = V + PL(Zh). Introduce the bilinear form ap defined on
V (h) x V (h) by

an(v, w) = /QEVhD-Vhw+/Q(9—V-/)’)Dw—/Ql)(,b’-Vhw)

+ 3 [ pneloule+ [ @, (2.11)
i JF 0Qout
FeZ}
and equip V (h) with the norm
1 1 1
l0llsp5,0 = ll€2Vhollo,@ + llo 2vllo,e + lI18-nlZvll0,00- (2.12)

The bilinear form ap, is not ||-|| 4, o -coercive on V (h) due to the presence of the jump terms in (2.11).
To control these terms, consider the bilinear form j defined on V (h) x V (h) by

ho.w = 3 [ @nebleot, (2.13)
Feg] F

where w' is the so-called downwind value of w defined as w¥ = w|1,k) if ne > 0and wt = w|r, (k)
otherwise.

LEMMA 2.1 Forallo € V (h),

1 .
012550+ D MBNel2DIElGF S an(,v) + jn(v, v). (2.14)

Fe?,i
Proof. Straightforward verification using integration by parts. O

Working with the bilinear form an, + jj, alone is not sufficient to control the advective derivative of
the discrete solution. For this purpose, we introduce the bilinear form s, on V (h) x V (h) such that

h2
ORI T2/ H A0 (2.15)

Fegri‘

where y > 0 is independent of any mesh size and of ¢ (the contribution of a face F € 35}; is conven-
tionally set to zero if fo,F = 0). This leads to the following discrete problem:

(2.16)

{seek Up € PL(Zh) such that for all o, € PL(%),
ap(Un, oh) + jh(Un, vh) + sh(Un, vh) = (f,on)o,0 — (9, vn)0,00i-

Lemma 2.1 implies that the bilinear form (an + jn +sh) is ||| .5, o -CO€rcive; hence, (2.16) is well-posed
owing to the Lax—Milgram Lemma.

REMARK 2.1 A term similar to the bilinear form jy, is also added in John et al. (1998) to control
the jumps across mesh interfaces. As in the discrete problem (2.16) where the bilinear form jj is
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introduced in addition to the bilinear form sy, this term is introduced in addition to the streamline—
diffusion term stabilizing the non-conforming finite-element approximation. To avoid this additional
term, it is possible to work with the erot finite element on rectangular meshes (Stynes & Tobiska, 2001)
or to consider a non-conforming finite-element space satisfying the patch-test of order three (Knobloch &
Tobiska, 2003); however, the dimension of this space is twice as large as the dimension of the Crouzeix—
Raviart finite-element space. Alternatively, one can penalize the jumps of all the gradient components
instead of just those of the advective components and take j, = 0; we refer to Burman (2005) for more
details.

3. Apriori error analysis

In this section, we present the convergence analysis for the discrete problem (2.16). The main result is
Theorem 3.1. Without loss of generality, we assume thath < land ¢ < 1.

The error analysis is performed in the spirit of the second Strang Lemma by considering two norms
on V (h), namely,

1 1
lwliae = lwlpso+ | D NBNel2Iwlelfe | +sh(w, w)2, (3.1)
FeZ]
2
lwlyz = lwllae + | D htlwlfr + 1wl | - (32)
Te%

Let u be the unique solution to (2.2) and let u, be the unique solution to (2.16).
LEMMA 3.1 (Stability) The bilinear form (an + jh + Sn) is ||-|| o, o -COercive.
Proof. Direct consequence of Lemma 2.1. O

LEMMA 3.2 (Continuity) Let /7 be the L2-orthogonal projection onto PL(Fh). Then, forall w € V
and for all wh € PL (%),

an(IThw —w, wn) S HThw = wlly 1lwnllae. (3.3)

Proof. Letw € V andseto = IThw — w. Let wy € Pnlc(%) and let us estimate each term in ap (v, wp).

(1) Itis clear that
[ e Shn+ [ 0= V-Boun < Wolgoolonlugmo S Wy glonlac.
(2) Letuswrite [, vB-Vhwn = [, 0(B—BL)-Vhwn+ [, vBE-Vhwn where gl is the L2-orthogonal

projection of g onto PL(J) = {on € L2(Q):VT € Fh,onlt € PY(T)}. Since p €
[‘50’% (£2)]9 and owing to the inverse inequality (2.5),

1
. _1
/ v(B = Bp)-Vhwn S E hy “llollo, lwnllo, T < llvlly, tllwnlia.e-
o :
Te%
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Furthermore, by construction, (v, fOS(ﬁ%-Vh wh))o.o = 0; hence, using (2.5), (2.6), (2.10),
the regularity of # and the shape-regularity of the mesh family yields

/Dﬁ%'vhwh=/v(ﬂ%'vhwh—fOs(ﬁﬁ'Vhwh))
o) Q

1
3 imel
S E lollo, E hE I8y Vhwn]F llo,F

Teh Feﬂ\TOS

1
< D llor | D) hEILAVawnlelo.F

Teh FeFds

+ > lolor | D h2ILGAE — A Vnwnle o F

Teh F GEZTOS

2

1 2 1
S {20 htielsr | Gn(wn wn)? + llwnllo.e) S lolly 3 lwhlla.e-
Te%

(3) Sincev € HYX(Q), p-nellvwn]lr = A-nev[wn]E. Hence,

Nl

1
2

> /ﬁ'nFllth]]F S22 Iolar > ANl Londel3

FeZ, Teh FeZl
S llolly, glwnlla,o-

Similarly,

>, /(,B'n)vwh S lolly 1 llwnllae.
. ,

Fezpu

Collecting the above inequalities yields (3.3).

LEMMA 3.3 (Error estimation) Assume that u € H2(£2). Set

—(f _
Ro(U) =  sup an(u, wn) — ( ,wh)0,9+(9,wh)o,ag.n. (3.4)

whePL(Th) lwnlla, o

Then,
lu—unliae < llu— Ihully 1 + Rn(u). (35)
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Proof. Since |[u — IThulla,0 < [lu — IThull, 1 the triangle inequality yields
lu—unlla.e < IU=Ihully 1+ [/7hU = Unlla,0-

Set wnh = IIhu — up and observe that wy € V (h). Then, the ||-|| a,o-coercivity of (an + jn + Sh) on
V (h) x V (h) yields

1Zhu — unll3 o < an(Tht — Un, wh) + ja(ITnU — Un, wn) + sh(IThU — Up, wh).

Moreover, using the fact that sh(u, wn) = jh(IZhu, wp) = 0 since u € H2(Q) and IThu € HL(Q)
leads to

an(/IhU — Un, wh) + ja(ITnU — Un, wh) + Sh(IInU — Un, wh)
= an(IInu — U, wp) + Sh(ZThu — u, wn) + an(u, wn) — (f, wn)o,e + (9, wh)o,00;,-
Owing to Lemma 3.2,
an(IInU — U, wn) S [u = ully 1llwnlia,0-
Furthermore,

1 1
sh(ZZnu — U, wn) < Sp(ZIpU — U, IIpu — U)2sh (wh, wn)2 < [Hpu = ully 1 llwnlla,0-

The conclusion is straightforward. O
LEMMA 3.4 (Consistency) Assume that u € H?(Q). Then,

1
[Rn(W)] < e2hllull2,e. (3.6)

Proof. Let wh € PL(Zh). Observe that

an(u, wn) — (f, w0 + (9, wh)o.oey = D /F8VU'HF|Iwh]]F-
Feg

Since P (%) satisfies the patch-test of order zero,

an(u, wn) — (f,wn)e + (9, wh)o.oo, = D /FS(VU — IR (Vu)-ne [wn]F,
Fefﬂi

where 772: [L2(F)]9 — [PO(F)]" denotes the L2-orthogonal projection on [P°(F)]%. Using the ap-
proximation properties of the L2-orthogonal projection onto [P°(F)]% and proceeding as in Crouzeix &
Raviart (1973) yields

lan (U, wh) — (f, wn)o + (9, wh)og,| S ehllull2, ol Vhwnllo, o,

whence (3.6) is readily inferred. O
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THEOREM 3.1 (Convergence) Assume thatu € H2(£2). Then,

1 1
lu—=unlla,e Sh(ez +h2)|ullze. (3.7)

Proof. Observe that 77y satisfies the following approximation property (see, e.g. Boman (2000) for local
approximation properties of /7y): for all v € H?(Q),

1 1
lo = TTholly 3 S he2 +h2)lvli2,0, 3.8)

and use Lemmata 3.3 and 3.4. O

REMARK 3.1 The a priori error estimate (3.7) shows that when keeping the Péclet number &~ fixed, the
convergence order in the mesh size for the error ||u —un || A, ¢ is 1 in the diffusion-dominated regime and
% in the advection-dominated regime. This estimate is similar to those derived for stabilized schemes in
the conforming setting; see, e.g. Brezzi & Russo (1994), Brooks & Hughes (1982), Burman & Hansbo
(2004) and Guermond (1999).

REMARK 3.2 The above analysis shares some common features with those presented in Burman (2005).
The main differences are that we consider mixed Robin—Neumann boundary conditions instead of

Dirichlet boundary conditions, that the advective field is in [‘50’%(9)]‘j instead of being piecewise
affine and that the stabilization is achieved by using the bilinear form (j, + sp) instead of penalizing the
jumps of all the gradient components across interfaces.

4. A posteriori error analysis

In this section, we present the residual a posteriori error analysis for the discrete problem (2.16). The
main results are Theorem 4.1 which yields an upper bound for the error and Theorem 4.2 which yields
a lower bound for the error.

Let fn, gn, Sn and 6, be, respectively, the L2-orthogonal projection of f, g, 4 and & onto the space
of (discontinuous) piecewise polynomials of degree at most 1. Let u be the unique solution to (2.2) and
let up be the unique solution to (2.16). As in Section 3, we assume without loss of generality thath < 1
and ¢ < 1. Furthermore, define

as = min(e"2hsg, 1), (4.1)

where S belongs to %, or %y, and observe that

-

1 1
hé <max(e?, as), 4.2)

hs < as. (4.3)
1
Indeed, (4.2) trivially holds if hs < & whereas if ¢ < hs, then h§ < as. Furthermore, (4.3) directly
results from the fact thath < land e < 1.

THEOREM 4.1 (Upper bound) The following holds:

U= Unllggoo S | D IrrUn)® + 61 )T+ D nen) | . (4.4)
Teh Feﬁ}i
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where we have introduced for all T e % the local data error indicators
or(un) = ar(If = fhllo,T + 1B — Bn)-Vunllo,r + 1@ — Gn)unllo,T)

1
+ > etaklo - on + (B — A neunllog, (45)

(2)
Fe7

as well as the local residual error indicators

1 1
71 (Uh) = ot || fo — Bn-Vuh — GhtnlloT + D & 4allle[Vaunle-nelo.F

Ferl)
_1 3
+ Z e 4ag|lgh + &Vun-ng — fh-neunllo,F, (4.6)
Feng(z)
1 1
nE(up) = hZ max(ar, e2) [ Vaunllr llo,F. (4.7)

where 7 = 71 0 (.7 U Z, FE = Fr 0 .F M and [Vauplr-ne = daun if F e FOU

1 1
REMARK 4.1 Since e%ag < h max(a,:,g%), the sum over F e fT(l) in (4.6) can be restricted to
Fe.Zr N ffﬁ’“t and the contribution of internal faces can be absorbed in »g (un). Henceforth, this
redundancy is not avoided to express the a posteriori error estimate as the sum of a term which is
formally identical to that obtained in a conforming setting, namely #7 (up), and a term specific to non-
conformity, namely g (up).

Proof. Leton = Zosun € P&(Jh) and set w = u — vp € H(Q). Then,
U= o120 < an(U — Un, w) + an(un — vh, w).
Furthermore, for all wp € Pcl(ﬂh) the following equality holds:
anh (U — Up, w) = ah (U — Up, w — wh) + jh(Un, wh) + Sh(Un, wh).
Hence,
lu = onllZ5.0 S @ (U = Un, w — wh) + jn(Un, wn) + Sh(Un, wh) + @n (Un — vh, ).

Let us estimate the four terms in the right-hand side of the above equation. Set wn = hw € PL(%h)
where %}, denotes the Clément interpolant of w.

(1) Estimate of ap (U — up, w — wp). Using the techniques presented in Verfiirth (1998) yields

2

an(u—un,w—wn) S| D [T+ ol o-
Te%

(2) Estimate of jn(un, wh). Let F € #.
(2.a) Assume o = 1. Owing to (2.6) and (2.7),

1 1
/ﬂnFI[Uh]]Fwﬁ S hENTVaundlr llo,r llwnllo, 7 = hEar ITVaunlrllo,Fllwnllo, 7 -
F
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(2.b) Assume afp = 8_%h|:. Since fF|[uh]]F =0, it follows that

[ neondevt = [ 6 - mEprnelunleot + [ mRpnelunleof - mup),
F F F

where 77 is defined in the proof of Lemma 3.4. Since € [¢%2 (2)]9, using (2.6), (2.7)

and (4.2) yields
1
/Fw — 12y ne[unlewd < hZIMundello.rllwy llo.r
< he ITVhunT ok lwn o7

1 1
S hEmax(e?, ap) [[Vaunllr llo,r lwnllo, 7 -

Moreover,

/F m2pne[unlle (wy — I2w}) < IMunlellorlwy — 2w o

_1. 3 1
S e ZhZI[Vaunlello,rlle2 Vwnllo, 7 -

Collecting the above estimates yields

Nl

. 1
jn(un,wn) S| D0 me@n)? | (g2 Vionllo.e + llwsllo,e).
Feﬁ}i

Finally, owing to the L2- and H !-stability of the Clément interpolation operator (Bernardi &

Girault, 1998), it is inferred that

nun,wn) ST D2 ne@n)? | ol o0-
Feéz,i

(3) Estimate of sp (U, wn). Let F € ..
(3.a) Assume ar = 1. Owing to (2.5) and (2.6),

h2 1
/Fﬁ FF [8-Vaunlr[8-Vwnllr < hEILVaunlrllo,Fllwnllo, 7 -
00,

(3.b) Assume afp = e‘%hp. Then,

h2 _1
/Fﬁ FFI[ﬂ-thh]]F[[/f-th]]F < hZ|[VhunlFllo.ehe2 I Vwnllo, 7
o0,

_1, 3 1
S e 2hE[TVaundrllo,Flle? Vwnllo, 75 -
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Collecting the above estimates and using the L2- and H ®-stability of the Clément interpol-
ation operator yields

2
shUn, wn) S | D neUn)® | llwllypo.e-
Feﬂ}i

(4) Estimate of ap(Up — vp, w).

(4.a) Estimate of the diffusive term. Let T € .Z. Use (2.10) to infer

11 1
/evh(uh—vm-sz > ezhZ|[VhunlelloF | le2 Vel
s

Fe.ﬁ_ﬂps

(4.b) Estimate of the reactive term. Let T € ;. Use (2.10) and (4.3) to infer

3
/TQ(Uh—vh)wS > hElIVaunlellor | lwllo.r

7 0s
FeZr

1
> hiar|[Vaunlello.F | lwllo.r.
FeFds

A

(4.c) Estimate of the advective and face terms. Observe that these terms can be written in the
form > 5 E1 with

Er =[5 - - : - 4,
T /TﬁVh(uh vh)w /aTinn(ﬁnT)(Uh OR)W (4.8)

=—/(uh —vh)ﬂ~Vw—/<V~,b’>(uh —vh>w+/ Bnr)Un —on)w,  (49)
T T T+

where nt denotes the outward normal to T and 6T* = oT\(6T N o). If a1 = 1,
consider (4.8) and use (2.10) to infer

1
/Tﬁ-vh(uh—z)h)wg > hZiIVaunlelloF | llwlior

7 0s
FeZr

1
> hiar|[Vaunlellor | lwlo.r.

70s
Feos

A
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owing to the shape-regularity of the mesh family. Moreover, if T has a face on 6Qjn, say
Fr, using (2.6) and (2.10) leads to

/T Bnr)un —on)w < [ D hel[Vaunlello.r B2 wllokr -
T NoQin

70s
FeZy

Hence,

1 1
1271 S hZarI[Vaunlelior | (lwlor + BNI2Zwllo,F)-

Feﬁ‘}os

Ifar = s_%hT, consider (4.9). Owing to (2.10),

_1 3 1
Jan—mpvos| ¥ e Eniiudelor | 163 Volor.
T FG.QTOS

Furthermore, the term [ (V-f)(unh — vn)w is estimated as in Step (4.b). Let F c oT*.
Assume first that F e .7, . Observe that

[ #nelun - ondew = [ 6= n2pyneundew + [ m2pneunde (o - 1w)
F F F

since vy, € Pcl(ﬁh). Proceeding as above yields

3 3
2 2

3 1 1
/ p-nellun —onllrw S hENLVaundFlloFllwllo,r + & 2hENITVaunllr llo,rlleZ Vwllo, 7
F

_1. 3 1
S e 2hZIIVaunlello,r(le2 Vwllo, 7 + llwllo, 7 ).

1 1 .
where we have used the trace inequality ||wl]lo,r < ||w||g T ||w||12 T valid for all w €

~

H1(Q). Furthermore, if F C 8Qqut, using (2.6), (2.10) and (4.2) yields

1
/ Bn(Un — omw < llun — onllo.e AN wllo
E

1
S| D0 bedlllVaunde o | 1802 wlloF

F/ey%s,:)

1 1 1
> hE maxe?, ap)I[Vhunle lloe | IANIZwlo.F.

7 0Os

F/e,/T(F)

A
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Collecting the above inequalities yields

N

2
an(un —on,w) S| D0 nen)? | wllypoo-
Fe?"ﬂi]

(5) Owing to Steps (1)—(4) above, it is inferred that

Nl

Iu=vhllegoo S | D Inr(un)® +r n)?1+ > e (un)?
Teh Fedl

Using (2.10), (4.3) and the shape-regularity of the mesh family yields

N

1
le2 Vh(un — on)lo.o + lun —vhllo.e S | D ehe +h)IIVaunTel ¢
Feﬂg

S| D0 @he +heap)ITVaundrlls e
Feff,i

Moreover, forall F ﬂ‘ha, owing to (2.6), (2.10) and (4.2),

1
ANz un —onllor S D, helllVaune llo.F

F/efé\%ﬁ:)

3 1
S Z hg max(e2, ap) [[VhunllF llo,F -

F’etg‘"TO(SF)

Collecting the above estimates yields

Nl

2
luh = onllope. S | D 7F(UR)
Feé"‘:ﬁ

Use the triangle inequality to conclude. O
Let T € .75 and let A1 denote the union of elements of .7, sharing at least a vertex with T. For all
w € V(h), localize [|w| .44, o as follows:

1 1 -
lwlleps.ar = €2 Vhvllo,ar + llo2wllo,ar + > lBnlzwliie | -
FeﬁATﬁfha

where .7z, denotes the set of faces of the elements in Ar.
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THEOREM 4.2 (Lower bound) Forall T € %,

1
nt(Un) S (L+e72at)|lu = Unllpo,ar + dar (Un), (4.10)

where da; (Un) = Y 1/ca; 01 (Un), and for all F e .7,

_1 1 . 1
nE(Up) S e” 2 max(ar, 82)(”“ — Unllgpo, 7 + inf lez(Vu — Zh)||0,9p)~ (4.11)
zhe[PE(Sh)]8

Proof. The upper bound (4.10) is obtained by using the techniques presented in Verflrth (1998). To
prove (4.11), let z,, € [Pcl(ﬂh)]d and let F € .Z!. Observe that [Vhun]lF = [Vhun — znllr. Then,
using (2.6) and the triangle inequality yields

1 _1
ITVhunllello,r < he?lIVaun = znllo, 7 < he®(IVU = Vhunllo, 2 + VU = Znllo, )

The conclusion is straightforward. O

REMARK 4.2 Since af < 1, the following global lower bound is inferred:

2

1 . 1
2 E neun)? | Sllu- Unllego,o + inf  fle2(VUu —zp)llo,0-
i zhe[PE(Sh)]
FeZ}

Hence, if the exact solution is smooth enough (u € H2()), the first term in the right-hand side is
bounded by h(g% + h%)||u ll2,o owing to Theorem 3.1, while the second term is bounded by hes lull2,e.

5. Numerical results

In this section, two test cases are presented to illustrate the above theoretical results. In both cases,
Q = (0,1) x (0,1) and we consider a shape-regular family of unstructured triangulations of Q with
mesh size hj = hox2~' with hg = 0.1 and i e {0,...,4}. The diffusion coefficient ¢ takes the
values {1072, 10~%, 10~} and the reaction coefficient ¢ is set to 1. The parameter y in (2.15) is set to
0.005. While the optimal value for this parameter is problem-dependent, our experience with various
test cases shows that the stabilized method behaves fairly well with values in the range 10~3-10~2, and
that within this range, the method is less sensitive to the actual choice for the value of y than is the
streamline-diffusion method to the choice of its corresponding parameter.

5.1 Testcasel
Let 4 = (1,0)" and choose the data f and g so that the exact solution of (2.1) is

ulx,y) = % (1 — tanh (O'Z_ X)) , (5.1)

with internal layer width a,, = 0.05.
Table 1 presents the convergence results for the error |[u — un|la.@; Nfa denotes the number of
degrees of freedom (i.e. the number of mesh faces) and w denotes the convergence order with respect to
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TABLE 1 Numerical errors and convergence orders for the different values of ¢

Mesh e =102 e=10"* e=10"%
Nfa lu—Uunllae o lu—Uunllae lu—Uunllae
374 1.04 — 1.01 — 9.99 x 1071 —

1441 4.05x 1071 1.40 3.76 x 1071 1.46 371x1071 147
5621 153 x 1071 1.43 1.29 x 1071 157 1.26 x 10°1  1.59
22330 6.02 x 1072 1.35 452 x 1072 1.52 440 x 1072 1.52
88961 2.45x%x 1072  1.30 1.61 x 1072 1.49 155 x 1072 151

A OWONPEFE O|—

the square root of the number of degrees of freedom (or, equivalently, the mesh size for quasi-uniform

meshes). In the advection-dominated regime (¢ = 10~* and ¢ = 107), the error decreases as h3. In
the intermediate regime (¢ = 10~2), the convergence order changes from % to 1 as the mesh is refined.
These results are in agreement with the estimate derived in Theorem 3.1.

Let #1(up), #2(un) and d(up) be the global error estimators defined as

Nl

1
1 1
7 2

mn) = D @)’ | . omen) = D0 ae@n)?| L sy = D srwn)’|
Ted FeZi Tedh 652

where the local error indicators #1 (up), 7 (un) and o7 (up) are defined in (4.6), (4.7) and (4.5), re-
spectively. Since the data are smooth, the data error indicator 6(up) is evaluated using L2-orthogonal
projections onto the space of (discontinuous) piecewise affine functions. The asymptotic behaviour of
the global error estimators with respect to the number of degrees of freedom is presented in Fig. 1.
The error u — up measured in the norm |-||4,, o is also presented in Fig. 1. For the three values of
the diffusion coefficient, the error estimator 71 (un) has approximately the same convergence order as the
error. The data error indicator d(up) converges to second order in the diffusion-dominated regime and to
order % in the advection-dominated regime. The error estimator 72 (uy) super-converges in the diffusion-
dominated regime, while its convergence order is close to 1 in the advection-dominated regime. The
efficiency index evaluated as

_ n1(up) + n2(Un) + d(Un)
lu— uh”eﬁ’a,Q

| , (5.3)

is in the range 8-30 for ¢ = 1072, in the range 73-280 for ¢ = 10~ and in the range 97-1262 for

¢ = 1075, The increase of the efficiency index is roughly proportional to s‘%, in agreement with the
theoretical results of Section 4.

5.2 Test case 2

Let 73 denote the lower horizontal edge of Q and let /5 denote its left vertical edge. Set g = (2,1)",
f =0, and define the boundary data g on 71 U I3 such that

g(x,y) = %(tanh(ai) + 1) + %(tanh (_al) + 1) , (5.4)
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. —— error 10k ' " —— error J
100 L ‘\\\‘\ oue 1] (uh) ] — oo M1 (uh)
. ) 100 L
107 ¢
10-1 L
102
10-3 L . 4 10
10.4 E 1 1 “ 10-3 3 1 1
103 10* 10° 10*
10tk j ' ~—error |
— e 7571((’4;,)
.. R ®-neee . uy,
100 T M ()

10-1 L
10-2 L

10-3 L

10-4 L L L i
103 104

FiG. 1. I56xact error and global error estimators against degrees of freedom. Top left: ¢ = 1072; top right: & = 10~%; bottom:
e=10"°.

FIG. 2. Contour lines of the solution for test case 2. Left: & = 10~2; centre: ¢ = 10™%; right: e = 108,

with a,, = 0.05. Thus, g ensures a sharp but smooth transition from 0 (on 73) to 1 (on 71) at the
origin. Owing to the Robin boundary condition, the solution exhibits an inner layer located along the
line {x = 2y}. Figure 2 presents the contour lines of the computed solution for the different values of «.
Owing to the maximum principle, the exact solution is comprised between —1 and 0. On the finest mesh,
the approximate solution exhibits an overshoot (respectively, undershoot) of 2 x 10~° (respectively, 0)
for e = 10‘62, 8 x 1072 (respectively, 1 x 1071) for e = 10~* and 1 x 10~ (respectively, 1 x 10~1)
fore = 107°.
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To refine the mesh adaptively using the local error indicator #t (up), the following algorithm is
considered:

(i) Construct an initial mesh 210. Seti :=0.

(if) Compute the approximate solution uL on fhi and compute the local error indicators #r; (u‘h) for
all Ty e 7.
(iii) If the global error is sufficiently small, stop; otherwise, compute the quantities

ht, = 1y, (ub)hT,,

where (yr; () = 3 if 57, (ul) < Si and (7, (u})) = 1 otherwise. The threshold S; is
evaluated as S§i = ﬁ ZTieghi 7T (uL) where nt; denotes the number of triangles in the

mesh 7.
iv) Using the quantities ht. to construct a new mesh 41, Go to Step (ii).
g q i h p

Figure 3 presents the adaptively refined meshes after five iterations of the above algorithm. For the
three values of the diffusion coefficient, the mesh is refined at the origin. In the diffusion-dominated
regime, the mesh is refined around the inner layer and at the outflow layer. In the advection-dominated
regime, the meshes are refined along the inner layer. The refined zone becomes smaller as the diffusion
coefficient ¢ takes smaller values, indicating that the local error indicator 77 (un) alone can detect the
inner layer.

Figure 4 presents the asymptotic behaviour of the global error estimators #1(un) and #2(up) as a
function of the number of degrees of freedom in the adaptively refined meshes. For of comparison the

error estimators evaluated by setting as = ¢~ 2 hs and designated by a star superscript are also plotted.
In the diffusion-dominated regime (¢ = 1072), 51(up) = 777 (up) and n2(un) = 75 (un) (hence, only two
curves are visible in the top left plot in Fig. 4). Moreover, both error estimators super-converge on the
coarser meshes, and their convergence order relaxes to the expected asymptotic behaviour (order 1) on
the finer meshes. The change from advection-dominated to diffusion-dominated regime is clearly visible
for ¢ = 10~*; the convergence order of both error estimators is close to 2 (yielding super-convergence)

. _1 A _
whenever as is evaluated as ¢ ~2hg. The same behaviour is observed for ¢ = 1076,

F1G. 3. Adaptive meshes after five iterations. Left: ¢ = 102 and Ny = 26698; centre: ¢ = 10~4 and Ny = 7460; right:
e =106 and N, = 7158.
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a_ — 1 () O — 1y (up)
100 ™ 1 7 T ..
e T (W) we o (Uy)
b * 1L T, * .
Ny s M () 10 e 1 ()
AN oo M () ] T o M, (uy)
-1 h - I
10 100 L -«
10'2 E L I - 10.1 E I 4
10° 10* 3.10% 103 2.10%3.10° 9.10°
I — My (up)
O . x T]g( (uh)
102 . T S weeene M () o

"oz M)

......

101 ~ J
100 ¢ —_—
3.10% 103 2.1033.10° 9.10°

F1G. 4. Global error estimators against degrees of freedom. Top left: ¢ = 1072, top right: & = 10~4; bottom: & = 1076,

6. Conclusions

In this paper, we have presented an a priori and an a posteriori error analysis for a non-conforming finite-
element method to approximate advection—diffusion equations. The method is stabilized by penalizing
the jumps of the solution and those of its advective derivative across mesh interfaces. The a priori
error analysis leads to (quasi-)optimal error estimates in the mesh size in the sense that keeping the
Péclet number fixed the estimates are sub-optimal of order % in the L2-norm and optimal in the broken
graph norm for quasi-uniform meshes. These estimates are similar to those obtained with other methods.
A drawback of the present scheme is the presence of face-oriented bilinear forms leading to a discretiza-
tion stencil larger than that resulting from the use of the Crouzeix—Raviart finite element. When solving
non-linear problems, e.g. the Navier-Stokes equations, these terms can be treated in the framework of
a non-linear iterative solver thus avoiding the widening of the stencil; see, e.g. Ouazzi & Turek (2005).
Finally, the a posteriori error analysis leads to semi-robust error indicators, meaning that the factor be-
tween the lower and upper bounds scales as the square root of the Péclet number. The present analysis
provides the first semi-robust a posteriori error estimator in a non-conforming setting and can be viewed
as a first step towards establishing robust a posteriori error estimators in this setting.
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