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We analyse a non-conforming finite-element method to approximate advection–diffusion–reaction equa-
tions. The method is stabilized by penalizing the jumps of the solution and those of its advective deriva-
tive across mesh interfaces. The a priori error analysis leads to (quasi-)optimal estimates in the mesh
size (sub-optimal by order 1

2 in the L2-norm and optimal in the broken graph norm for quasi-uniform
meshes) keeping the Péclet number fixed. Then, we investigate a residual a posteriori error estimator for
the method. The estimator is semi-robust in the sense that it yields lower and upper bounds of the error
which differ by a factor equal at most to the square root of the Péclet number. Finally, to illustrate the
theory we present numerical results including adaptively generated meshes.

Keywords: non-conforming finite elements; face penalty; advection; diffusion; a posteriori error
estimator; adaptive meshes.

1. Introduction

Advection–diffusion equations in the dominant advection regime are encountered in many applica-
tions, including pollutant transport and the Navier–Stokes equations. It is well-known that the standard
Galerkin approximation of these equations leads to oscillations when layers are not properly resolved.
To stabilize this phenomenon, several well-established techniques have been proposed and analysed in
a conforming setting (e.g. streamline–diffusion, Brooks & Hughes, 1982; Johnson et al., 1984, subgrid
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viscosity, Guermond, 1999, 2001, and residual free bubbles, Brezzi & Russo, 1994) as well as in a
discontinuous setting (e.g. the discontinuous Galerkin method in Johnson & Pitkäranta, 1986).

An interesting compromise between conforming and discontinuous Galerkin methods consists of
using non-conforming finite elements. In this paper, we are interested in low-order non-conforming finite
elements such as the Crouzeix–Raviart finite element. This finite element presents various interesting
features. First, the degrees of freedom are localized at the mesh faces, thereby leading to efficient com-
munication and parallelization. Second, Crouzeix–Raviart finite elements have close links with finite-
volume box schemes; see, e.g. Courbet & Croisille (1998) and Croisille (2000) for Darcy’s equations and
El Alaoui & Ern (2006) for advection–diffusion equations. This property is useful to reconstruct locally
the diffusive flux in problems where conservativity properties are important, e.g. pollutant transport. Fi-
nally, keeping the mesh fixed, the Crouzeix–Raviart finite-element space has approximately twice fewer
degrees of freedom than the first-order discontinuous Galerkin finite-element space.

The topic of approximating advection–diffusion equations by Crouzeix–Raviart finite elements is not
new; see John et al. (1998) and Matthies & Tobiska (2001) where the streamline–diffusion paradigm
is extended to the non-conforming setting. The difficulties with streamline–diffusion, in both conform-
ing and non-conforming settings, are that the method involves a parameter depending on the diffu-
sion coefficient and that the extension to time-dependent problems is not straightforward. This can
be impractical in non-linear problems, e.g. the Navier–Stokes equations where the regions with dom-
inant convection may not be known a priori. In this paper, we consider a different technique to sta-
bilize the non-conforming finite-element approximation, namely that of penalizing the jumps of the
solution and those of its advective derivative across mesh interfaces. Drawing on earlier ideas by
Douglas & Dupont (1976), the analysis of face penalty finite-element methods has been recently ex-
tended to advection–diffusion equations with dominant advection (Burman, 2005; Burman & Hansbo,
2006) and to the Stokes equations (Burman & Hansbo, 2004); see also Ouazzi & Turek (2005) for an
application to incompressible flow problems. The advantage of using the face penalty technique rather
than streamline–diffusion is that the former involves a single user-dependent parameter which is in-
dependent of the diffusion coefficient. Moreover, the face penalty technique is readily extendable to
time-dependent problems.

The a posteriori error analysis of non-conforming finite-element approximations to advection–
diffusion equations is a much less explored topic. Even in a conforming setting, the analysis is harder
than it seems at the first sight. The main issue at stake is to derive a so-called robust error estimator for
which the upper and lower bounds for the error differ by a factor that is independent of the Péclet num-
ber. The first main advance in this direction was achieved by Verfürth (1998) in a conforming setting,
the proposed error estimator yielding a factor between lower and upper error bounds which scales at
most as the square root of the Péclet number. Such error estimators are henceforth called semi-robust.
Further results in this direction include Araya et al. (2005a,b) and Berrone (2002). Recently, robust error
estimators, still in a conforming setting, have been proposed by Verfürth (2005) and Sangalli (2004b).
For this purpose, the norm in which the error is measured has to be modified; in particular, it includes
the advective derivative of the error. In Verfürth (2005), the advective derivative is measured in a dual
(non-local) norm. In Sangalli (2004b), the advective derivative is measured in a non-standard interpo-
lated norm of order 1

2 introduced in Sangalli (2004a) and which can be evaluated by solving a gener-
alized eigenvalue problem on a fine mesh. The purpose of the present work is to propose and analyse
a semi-robust error estimator for non-conforming finite-element approximations to advection–diffusion
equations. To our knowledge, it is the first semi-robust error estimator in this setting. The present analy-
sis can be viewed as a first step towards establishing robust error estimators in the non-conforming
setting.
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This paper is organized as follows. Section 2 presents the model problem and the non-conforming
finite-element approximation with face penalty. Section 3 deals with the a priori error analysis and
Section 4 with the residual a posteriori error analysis. Section 5 contains numerical results and Section 6
draws the conclusions.

2. The setting

2.1 The model problem

Let Ω be a polygonal domain of Rd with Lipschitz boundary ∂Ω and outward normal n. Let ε > 0,

β ∈ [C 0, 1
2 ( �Ω)]d and θ ∈ L∞(Ω) be, respectively, the diffusion coefficient, the velocity field and the

reaction coefficient. Set ∂Ωin = {x ∈ ∂Ω: β·n < 0} and ∂Ωout = {x ∈ ∂Ω: β·n � 0}. Let f ∈ L2(Ω)
and g ∈ L2(∂Ωin) be the data. We are interested in the following advection–diffusion–reaction problem
with mixed Robin–Neumann boundary conditions:⎧⎪⎪⎨

⎪⎪⎩
−ε�u + β·∇u + θu = f in Ω,

−ε∇u·n + β·nu = g on ∂Ωin,

∇u·n = 0 on ∂Ωout.

(2.1)

Without loss of generality, we assume that (2.1) is non-dimensionalized so that ‖β‖[L∞(Ω)]d and
the length scale of Ω are of order unity; hence, the parameter ε is the reciprocal of the Péclet
number.

Under the assumption that there is σ0 > 0 such that σ = θ − 1
2∇·β � σ0 in Ω and that ∇·β ∈

L∞(Ω), it is straightforward to verify using the Lax–Milgram Lemma that the following weak formu-
lation of (2.1) is well-posed:{

seek u ∈ H1(Ω) such that

a(u, v) = ∫
Ω f v − ∫

∂Ωin
gv ∀ v ∈ H1(Ω),

(2.2)

where

a(u, v) =
∫

Ω
ε∇u·∇v +

∫
Ω

(θ − ∇·β)uv −
∫

Ω
u(β·∇v) +

∫
∂Ωout

(β·n)uv. (2.3)

2.2 The discrete setting

Let (Th)h be a shape-regular family of simplicial affine meshes of Ω . For an element T ∈ Th , let ∂T
denote its boundary, hT its diameter and set h = maxT ∈Th hT . Henceforth, the notation ξ � ζ means
that there is a positive c, independent of any mesh size and of ε, such that ξ � cζ . Since the advection–
diffusion problem has been non-dimensionalized so that the field β is of order unity, the dependency on
β can be hidden in the constants in the error estimates. The same is done for the function θ since we are
not interested in the asymptotics of strong reaction regimes.

LetFh ,F i
h andF ∂

h denote, respectively, the set of faces, internal and external faces in Th . LetF in
h

andF out
h be the set of faces belonging, respectively, to ∂Ωin and ∂Ωout so thatF ∂

h = F in
h ∪F out

h . For a
face F ∈ Fh , let hF denote its diameter and TF the set of elements in Th containing F . For an element
T ∈ Th , letFT denote the set of faces belonging to T . LetSh be the set of mesh vertices. For a vertex
s ∈ Sh , let Ts denote the set of elements in Th containing s.
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For an integer k � 1, let Hk(Th) = {v ∈ L2(Ω): ∀ T ∈ Th, v|T ∈ Hk(T )}. We introduce the
discrete gradient operator ∇h : H1(Th) → [L2(Ω)]d such that for all v ∈ H1(Th) and for all T ∈
Th, (∇hv)|T = ∇(v|T ). Let F ∈ F i

h ; then, there are T1(F) and T2(F) ∈ Th such that F = T1(F) ∩
T2(F). Conventionally, choose nF to be the unit normal vector to F pointing from T1(F) towards T2(F).
For v ∈ H1(Th), define its jump across F as

[[v]]F = v|T1(F) − v|T2(F) a.e. on F . (2.4)

For F ∈ F ∂
h , define nF to be the unit normal to F pointing towards the exterior of Ω and for v ∈

H1(Th), set [[v]]F = v|T (F) where T (F) is the mesh element of which F is a face. A similar notation
is used for the jumps of vector-valued functions, the jump being taken componentwise.

For a measurable subset R ⊂ Ω , (·, ·)0,R denotes the L2(R)-scalar product, ‖·‖0,R the associated
norm, ‖·‖k,R the Hk(R)-norm for k � 1 and β∞,R the [L∞(R)]d -norm of the function β.

Consider the Crouzeix–Raviart finite-element space P1
nc(Th) defined as (Crouzeix & Raviart, 1973)

P1
nc(Th) =

{
vh ∈ L2(Ω): ∀ T ∈ Th, vh |T ∈ P1(T ) ∀ F ∈ F i

h,

∫
F

[[vh]]F = 0

}
,

where P1(T ) denotes the vector space of polynomials on T with degree less than or equal to 1. For
further purposes, we restate some well-known results. For all vh ∈ P1

nc(Th), for all T ∈ Th and for all
F ⊂ ∂T ,

‖vh‖1,T � h−1
T ‖vh‖0,T , (2.5)

‖vh‖0,F � h
− 1

2
F ‖vh‖0,T , (2.6)

‖[[vh]]F‖0,F � hF‖[[∇hvh]]F‖0,F . (2.7)

Let P1
c (Th) = P1

nc(Th) ∩ H1(Ω) be the usual first-order conforming finite-element space. Let IOs:
P1

nc(Th) → P1
c (Th) be the so-called Oswald interpolation operator (El Alaoui & Ern, 2004; Hoppe &

Wohlmuth, 1996) defined as follows:

∀ vh ∈ P1
nc(Th), ∀ s ∈ Sh, IOsvh(s) = 1


(Ts)

∑
T ∈Ts

vh |T (s), (2.8)

where 
(Ts) denotes the cardinal number ofTs . This operator is endowed with the following approxima-
tion property (Achdou et al., 2003; Burman, 2005; Karakashian & Pascal, 2003): for all vh ∈ P1

nc(Th)
and for all T ∈ Th ,

‖vh −IOsvh‖0,T + hT ‖∇(vh −IOsvh)‖0,T �
∑

F∈FOs
T

h
1
2
F‖[[vh]]F‖0,F , (2.9)

where FOs
T denotes all the interior faces in the mesh containing a vertex of T . Using (2.7) and (2.9)

yields

‖vh −IOsvh‖0,T + hT ‖∇(vh −IOsvh)‖0,T �
∑

F∈FOs
T

h
3
2
F‖[[∇hvh]]F‖0,F . (2.10)
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2.3 The discrete bilinear forms

Set V = H2(Th) ∩ H1(Ω) and V (h) = V + P1
nc(Th). Introduce the bilinear form ah defined on

V (h) × V (h) by

ah(v,w) =
∫

Ω
ε∇hv·∇hw +

∫
Ω

(θ − ∇·β)vw −
∫

Ω
v(β·∇hw)

+
∑

F∈F i
h

∫
F

β·nF [[vw]]F +
∫

∂Ωout

(β·n)vw, (2.11)

and equip V (h) with the norm

‖v‖εβσ,Ω = ‖ε
1
2 ∇hv‖0,Ω + ‖σ 1

2 v‖0,Ω + ‖|β·n| 1
2 v‖0,∂Ω . (2.12)

The bilinear form ah is not ‖·‖εβσ,Ω -coercive on V (h) due to the presence of the jump terms in (2.11).
To control these terms, consider the bilinear form jh defined on V (h) × V (h) by

jh(v,w) =
∑

F∈F i
h

∫
F
(β·nF )[[v]]Fw↓, (2.13)

where w↓ is the so-called downwind value of w defined as w↓ = w|T2(F) if β·nF � 0 and w↓ = w|T1(F)

otherwise.

LEMMA 2.1 For all v ∈ V (h),

‖v‖2
εβσ,Ω +

∑
F∈F i

h

‖|β·nF | 1
2 [[v]]F‖2

0,F � ah(v, v) + jh(v, v). (2.14)

Proof. Straightforward verification using integration by parts. �
Working with the bilinear form ah + jh alone is not sufficient to control the advective derivative of

the discrete solution. For this purpose, we introduce the bilinear form sh on V (h) × V (h) such that

sh(v,w) =
∑

F∈F i
h

∫
F

γ
h2

F

β∞,F
[[β·∇hv]]F [[β·∇hw]]F , (2.15)

where γ > 0 is independent of any mesh size and of ε (the contribution of a face F ∈ F i
h is conven-

tionally set to zero if β∞,F = 0). This leads to the following discrete problem:{
seek uh ∈ P1

nc(Th) such that for all vh ∈ P1
nc(Th),

ah(uh, vh) + jh(uh, vh) + sh(uh, vh) = ( f, vh)0,Ω − (g, vh)0,∂Ωin .
(2.16)

Lemma 2.1 implies that the bilinear form (ah + jh +sh) is ‖·‖εβσ,Ω -coercive; hence, (2.16) is well-posed
owing to the Lax–Milgram Lemma.

REMARK 2.1 A term similar to the bilinear form jh is also added in John et al. (1998) to control
the jumps across mesh interfaces. As in the discrete problem (2.16) where the bilinear form jh is
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introduced in addition to the bilinear form sh , this term is introduced in addition to the streamline–
diffusion term stabilizing the non-conforming finite-element approximation. To avoid this additional
term, it is possible to work with the Q1

rot finite element on rectangular meshes (Stynes & Tobiska, 2001)
or to consider a non-conforming finite-element space satisfying the patch-test of order three (Knobloch &
Tobiska, 2003); however, the dimension of this space is twice as large as the dimension of the Crouzeix–
Raviart finite-element space. Alternatively, one can penalize the jumps of all the gradient components
instead of just those of the advective components and take jh = 0; we refer to Burman (2005) for more
details.

3. A priori error analysis

In this section, we present the convergence analysis for the discrete problem (2.16). The main result is
Theorem 3.1. Without loss of generality, we assume that h � 1 and ε � 1.

The error analysis is performed in the spirit of the second Strang Lemma by considering two norms
on V (h), namely,

‖w‖A,Ω = ‖w‖εβσ,Ω +
⎛
⎜⎝ ∑

F∈F i
h

‖|β·nF | 1
2 [[w]]F‖2

0,F

⎞
⎟⎠

1
2

+ sh(w,w)
1
2 , (3.1)

‖w‖h, 1
2

= ‖w‖A,Ω +
⎛
⎝ ∑

T ∈Th

h−1
T ‖w‖2

0,T + ‖w‖2
0,∂T

⎞
⎠

1
2

. (3.2)

Let u be the unique solution to (2.2) and let uh be the unique solution to (2.16).

LEMMA 3.1 (Stability) The bilinear form (ah + jh + sh) is ‖·‖A,Ω -coercive.

Proof. Direct consequence of Lemma 2.1. �
LEMMA 3.2 (Continuity) Let Πh be the L2-orthogonal projection onto P1

c (Th). Then, for all w ∈ V
and for all wh ∈ P1

nc(Th),

ah(Πhw − w,wh) � ‖Πhw − w‖h, 1
2
‖wh‖A,Ω . (3.3)

Proof. Let w ∈ V and set v = Πhw−w. Let wh ∈ P1
nc(Th) and let us estimate each term in ah(v,wh).

(1) It is clear that∫
Ω

ε∇hv·∇hwh +
∫

Ω
(θ − ∇·β)vwh � ‖v‖εβσ,Ω‖wh‖εβσ,Ω � ‖v‖h, 1

2
‖wh‖A,Ω .

(2) Let us write
∫
Ω vβ·∇hwh = ∫

Ω v(β−β1
h )·∇hwh+∫

Ω vβ1
h ·∇hwh where β1

h is the L2-orthogonal
projection of β onto P1(Th) := {vh ∈ L2(Ω): ∀ T ∈ Th, vh |T ∈ P1(T )}. Since β ∈
[C 0, 1

2 (Ω)]d and owing to the inverse inequality (2.5),∫
Ω

v(β − β1
h )·∇hwh �

∑
T ∈Th

h
− 1

2
T ‖v‖0,T ‖wh‖0,T � ‖v‖h, 1

2
‖wh‖A,Ω .
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Furthermore, by construction, (v,IOs(β
1
h ·∇hwh))0,Ω = 0; hence, using (2.5), (2.6), (2.10),

the regularity of β and the shape-regularity of the mesh family yields∫
Ω

vβ1
h ·∇hwh =

∫
Ω

v(β1
h ·∇hwh −IOs(β

1
h ·∇hwh))

�
∑

T ∈Th

‖v‖0,T

⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
F‖[[β1

h ·∇hwh]]F‖0,F

⎞
⎟⎠

�
∑

T ∈Th

‖v‖0,T

⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
F‖[[β·∇hwh]]F‖0,F

⎞
⎟⎠

+
∑

T ∈Th

‖v‖0,T

⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
F‖[[(β1

h − β)·∇hwh]]F‖0,F

⎞
⎟⎠

�

⎛
⎝ ∑

T ∈Th

h−1
T ‖v‖2

0,T

⎞
⎠

1
2

(sh(wh, wh)
1
2 + ‖wh‖0,Ω) � ‖v‖h, 1

2
‖wh‖A,Ω .

(3) Since v ∈ H1(Ω), β·nF [[vwh]]F = β·nFv[[wh]]F . Hence,

∑
F∈F i

h

∫
F

β·nF [[vwh]]F �

⎛
⎝ ∑

T ∈Th

‖v‖2
0,∂T

⎞
⎠

1
2
⎛
⎜⎝ ∑

F∈F i
h

‖|β·nF | 1
2 [[wh]]F‖2

0,F

⎞
⎟⎠

1
2

� ‖v‖h, 1
2
‖wh‖A,Ω .

Similarly, ∑
F∈F out

h

∫
F
(β·n)vwh � ‖v‖h, 1

2
‖wh‖A,Ω .

Collecting the above inequalities yields (3.3).

�
LEMMA 3.3 (Error estimation) Assume that u ∈ H2(Ω). Set

Rh(u) = sup
wh∈P1

nc(Th)

ah(u, wh) − ( f, wh)0,Ω + (g, wh)0,∂Ωin

‖wh‖A,Ω
. (3.4)

Then,

‖u − uh‖A,Ω � ‖u − Πhu‖h, 1
2

+ Rh(u). (3.5)
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Proof. Since ‖u − Πhu‖A,Ω � ‖u − Πhu‖h, 1
2
, the triangle inequality yields

‖u − uh‖A,Ω � ‖u − Πhu‖h, 1
2

+ ‖Πhu − uh‖A,Ω .

Set wh = Πhu − uh and observe that wh ∈ V (h). Then, the ‖·‖A,Ω -coercivity of (ah + jh + sh) on
V (h) × V (h) yields

‖Πhu − uh‖2
A,Ω � ah(Πhu − uh, wh) + jh(Πhu − uh, wh) + sh(Πhu − uh, wh).

Moreover, using the fact that sh(u, wh) = jh(Πhu, wh) = 0 since u ∈ H2(Ω) and Πhu ∈ H1(Ω)
leads to

ah(Πhu − uh, wh) + jh(Πhu − uh, wh) + sh(Πhu − uh, wh)

= ah(Πhu − u, wh) + sh(Πhu − u, wh) + ah(u, wh) − ( f, wh)0,Ω + (g, wh)0,∂Ωin .

Owing to Lemma 3.2,

ah(Πhu − u, wh) � ‖Πhu − u‖h, 1
2
‖wh‖A,Ω .

Furthermore,

sh(Πhu − u, wh) � sh(Πhu − u,Πhu − u)
1
2 sh(wh, wh)

1
2 � ‖Πhu − u‖h, 1

2
‖wh‖A,Ω .

The conclusion is straightforward. �
LEMMA 3.4 (Consistency) Assume that u ∈ H2(Ω). Then,

|Rh(u)| � ε
1
2 h‖u‖2,Ω . (3.6)

Proof. Let wh ∈ P1
nc(Th). Observe that

ah(u, wh) − ( f, wh)0,Ω + (g, wh)0,∂Ωin =
∑

F∈F i
h

∫
F

ε∇u·nF [[wh]]F .

Since P1
nc(Th) satisfies the patch-test of order zero,

ah(u, wh) − ( f, wh)Ω + (g, wh)0,∂Ωin =
∑

F∈F i
h

∫
F

ε(∇u − Π0
F (∇u))·nF [[wh]]F ,

where Π0
F : [L2(F)]d → [P0(F)]d denotes the L2-orthogonal projection on [P0(F)]d . Using the ap-

proximation properties of the L2-orthogonal projection onto [P0(F)]d and proceeding as in Crouzeix &
Raviart (1973) yields

|ah(u, wh) − ( f, wh)Ω + (g, wh)∂Ωin | � εh‖u‖2,Ω‖∇hwh‖0,Ω,

whence (3.6) is readily inferred. �
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THEOREM 3.1 (Convergence) Assume that u ∈ H2(Ω). Then,

‖u − uh‖A,Ω � h(ε
1
2 + h

1
2 )‖u‖2,Ω . (3.7)

Proof. Observe that Πh satisfies the following approximation property (see, e.g. Boman (2000) for local
approximation properties of Πh): for all v ∈ H2(Ω),

‖v − Πhv‖h, 1
2
� h(ε

1
2 + h

1
2 )‖v‖2,Ω, (3.8)

and use Lemmata 3.3 and 3.4. �
REMARK 3.1 The a priori error estimate (3.7) shows that when keeping the Péclet number ε−1 fixed, the
convergence order in the mesh size for the error ‖u −uh‖A,Ω is 1 in the diffusion-dominated regime and
3
2 in the advection-dominated regime. This estimate is similar to those derived for stabilized schemes in
the conforming setting; see, e.g. Brezzi & Russo (1994), Brooks & Hughes (1982), Burman & Hansbo
(2004) and Guermond (1999).

REMARK 3.2 The above analysis shares some common features with those presented in Burman (2005).
The main differences are that we consider mixed Robin–Neumann boundary conditions instead of

Dirichlet boundary conditions, that the advective field is in [C 0, 1
2 (Ω)]d instead of being piecewise

affine and that the stabilization is achieved by using the bilinear form ( jh + sh) instead of penalizing the
jumps of all the gradient components across interfaces.

4. A posteriori error analysis

In this section, we present the residual a posteriori error analysis for the discrete problem (2.16). The
main results are Theorem 4.1 which yields an upper bound for the error and Theorem 4.2 which yields
a lower bound for the error.

Let fh , gh , βh and θh be, respectively, the L2-orthogonal projection of f , g, β and θ onto the space
of (discontinuous) piecewise polynomials of degree at most 1. Let u be the unique solution to (2.2) and
let uh be the unique solution to (2.16). As in Section 3, we assume without loss of generality that h � 1
and ε � 1. Furthermore, define

αS = min(ε− 1
2 hS, 1), (4.1)

where S belongs to Th orFh , and observe that

h
1
2
S � max(ε

1
2 , αS), (4.2)

hS � αS . (4.3)

Indeed, (4.2) trivially holds if hS � ε whereas if ε � hS , then h
1
2
S � αS . Furthermore, (4.3) directly

results from the fact that h � 1 and ε � 1.

THEOREM 4.1 (Upper bound) The following holds:

‖u − uh‖εβσ,Ω �

⎛
⎜⎝ ∑

T ∈Th

[ηT (uh)2 + δT (uh)2] +
∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

, (4.4)
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where we have introduced for all T ∈ Th the local data error indicators

δT (uh) = αT (‖ f − fh‖0,T + ‖(β − βh)·∇uh‖0,T + ‖(θ − θh)uh‖0,T )

+
∑

F∈F (2)
T

ε− 1
4 α

1
2
F‖g − gh + (β − βh)·nF uh‖0,F , (4.5)

as well as the local residual error indicators

ηT (uh) = αT ‖ fh − βh ·∇uh − θhuh‖0,T +
∑

F∈F (1)
T

ε− 1
4 α

1
2
F‖ε[[∇huh]]F ·nF‖0,F

+
∑

F∈F (2)
T

ε− 1
4 α

1
2
F‖gh + ε∇uh ·nF − βh ·nF uh‖0,F , (4.6)

ηF (uh) = h
1
2
F max(αF , ε

1
2 )‖[[∇huh]]F‖0,F , (4.7)

whereF (1)
T = FT ∩ {F i

h ∪F out
h },F (2)

T = FT ∩F in
h and [[∇huh]]F ·nF = ∂nuh if F ∈ F out

h .

REMARK 4.1 Since ε
3
4 α

1
2
F � h

1
2
F max(αF , ε

1
2 ), the sum over F ∈ F (1)

T in (4.6) can be restricted to
F ∈ FT ∩ F out

h and the contribution of internal faces can be absorbed in ηF (uh). Henceforth, this
redundancy is not avoided to express the a posteriori error estimate as the sum of a term which is
formally identical to that obtained in a conforming setting, namely ηT (uh), and a term specific to non-
conformity, namely ηF (uh).

Proof. Let vh = IOsuh ∈ P1
c (Th) and set w = u − vh ∈ H1(Ω). Then,

‖u − vh‖2
εβσ,Ω � ah(u − uh, w) + ah(uh − vh, w).

Furthermore, for all wh ∈ P1
c (Th) the following equality holds:

ah(u − uh, w) = ah(u − uh, w − wh) + jh(uh, wh) + sh(uh, wh).

Hence,

‖u − vh‖2
εβσ,Ω � ah(u − uh, w − wh) + jh(uh, wh) + sh(uh, wh) + ah(uh − vh, w).

Let us estimate the four terms in the right-hand side of the above equation. Set wh = Chw ∈ P1
c (Th)

where Ch denotes the Clément interpolant of w.

(1) Estimate of ah(u − uh, w − wh). Using the techniques presented in Verfürth (1998) yields

ah(u − uh, w − wh) �

⎛
⎝ ∑

T ∈Th

[ηT (uh)2 + δT (uh)2]

⎞
⎠

1
2

‖w‖εβσ,Ω .

(2) Estimate of jh(uh, wh). Let F ∈ F i
h .

(2.a) Assume αF = 1. Owing to (2.6) and (2.7),∫
F

β·nF [[uh]]Fw
↓
h � h

1
2
F‖[[∇huh]]F‖0,F‖wh‖0,TF = h

1
2
FαF‖[[∇huh]]F‖0,F‖wh‖0,TF .
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(2.b) Assume αF = ε− 1
2 hF . Since

∫
F [[uh]]F = 0, it follows that∫

F
β·nF [[uh]]Fw

↓
h =

∫
F
(β − Π0

Fβ)·nF [[uh]]Fw
↓
h +

∫
F

Π0
Fβ·nF [[uh]]F (w

↓
h − Π0

Fw
↓
h ),

where Π0
F is defined in the proof of Lemma 3.4. Since β ∈ [C 0, 1

2 (Ω)]d , using (2.6), (2.7)
and (4.2) yields∫

F
(β − Π0

Fβ)·nF [[uh]]Fw
↓
h � h

1
2
F‖[[uh]]F‖0,F‖w↓

h ‖0,F

� hF‖[[∇huh]]F‖0,F‖wh‖0,TF

� h
1
2
F max(ε

1
2 , αF )‖[[∇huh]]F‖0,F‖wh‖0,TF .

Moreover,∫
F

Π0
Fβ·nF [[uh]]F (w

↓
h − Π0

Fw
↓
h ) � ‖[[uh]]F‖0,F‖w↓

h − Π0
Fw

↓
h ‖0,F

� ε− 1
2 h

3
2
F‖[[∇huh]]F‖0,F‖ε 1

2 ∇wh‖0,TF .

Collecting the above estimates yields

jh(uh, wh) �

⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

(‖ε 1
2 ∇wh‖0,Ω + ‖wh‖0,Ω).

Finally, owing to the L2- and H1-stability of the Clément interpolation operator (Bernardi &
Girault, 1998), it is inferred that

jh(uh, wh) �

⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

‖w‖εβσ,Ω .

(3) Estimate of sh(uh, wh). Let F ∈ F i
h .

(3.a) Assume αF = 1. Owing to (2.5) and (2.6),∫
F

h2
F

β∞,F
[[β·∇huh]]F [[β·∇wh]]F � h

1
2
F‖[[∇huh]]F‖0,F‖wh‖0,TF .

(3.b) Assume αF = ε− 1
2 hF . Then,∫

F

h2
F

β∞,F
[[β·∇huh]]F [[β·∇wh]]F � h2

F‖[[∇huh]]F‖0,F h
− 1

2
F ‖∇wh‖0,TF

� ε− 1
2 h

3
2
F‖[[∇huh]]F‖0,F‖ε 1

2 ∇wh‖0,TF .
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Collecting the above estimates and using the L2- and H1-stability of the Clément interpol-
ation operator yields

sh(uh, wh) �

⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

‖w‖εβσ,Ω .

(4) Estimate of ah(uh − vh, w).

(4.a) Estimate of the diffusive term. Let T ∈ Th . Use (2.10) to infer

∫
T

ε∇h(uh − vh)·∇w �

⎛
⎜⎝ ∑

F∈FOs
T

ε
1
2 h

1
2
F‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖ε 1

2 ∇w‖0,T .

(4.b) Estimate of the reactive term. Let T ∈ Th . Use (2.10) and (4.3) to infer

∫
T

θ(uh − vh)w �

⎛
⎜⎝ ∑

F∈FOs
T

h
3
2
F‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖w‖0,T

�

⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
FαF‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖w‖0,T .

(4.c) Estimate of the advective and face terms. Observe that these terms can be written in the
form

∑
T ∈Th

ΞT with

ΞT =
∫

T
β·∇h(uh − vh)w −

∫
∂T ∩∂Ωin

(β·nT )(uh − vh)w (4.8)

= −
∫

T
(uh − vh)β·∇w −

∫
T
(∇·β)(uh − vh)w +

∫
∂T ∗

(β·nT )(uh − vh)w, (4.9)

where nT denotes the outward normal to T and ∂T ∗ = ∂T \(∂T ∩ ∂Ωin). If αT = 1,
consider (4.8) and use (2.10) to infer

∫
T

β·∇h(uh − vh)w �

⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
F‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖w‖0,T

�

⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
FαF‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖w‖0,T ,



NON-CONFORMING FINITE ELEMENTS FOR ADVECTION–DIFFUSION EQUATIONS 163

owing to the shape-regularity of the mesh family. Moreover, if T has a face on ∂Ωin, say
FT , using (2.6) and (2.10) leads to

∫
∂T ∩∂Ωin

(β·nT )(uh − vh)w �

⎛
⎜⎝ ∑

F∈FOs
T

hF‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖|β·n| 1

2 w‖0,FT .

Hence,

|ΞT | �
⎛
⎜⎝ ∑

F∈FOs
T

h
1
2
FαF‖[[∇huh]]F‖0,F

⎞
⎟⎠ (‖w‖0,T + ‖|β·n| 1

2 w‖0,FT ).

If αT = ε− 1
2 hT , consider (4.9). Owing to (2.10),

∫
T
(uh − vh)β·∇w �

⎛
⎜⎝ ∑

F∈FOs
T

ε− 1
2 h

3
2
F‖[[∇huh]]F‖0,F

⎞
⎟⎠ ‖ε 1

2 ∇w‖0,T .

Furthermore, the term
∫

T (∇·β)(uh − vh)w is estimated as in Step (4.b). Let F ⊂ ∂T ∗.
Assume first that F ∈ F i

h . Observe that∫
F

β·nF [[uh − vh]]Fw =
∫

F
(β − Π0

Fβ)·nF [[uh]]Fw +
∫

F
Π0

Fβ·nF [[uh]]F (w − Π0
Fw),

since vh ∈ P1
c (Th). Proceeding as above yields∫

F
β·nF [[uh − vh]]Fw � h

3
2
F‖[[∇huh]]F‖0,F‖w‖0,F + ε− 1

2 h
3
2
F‖[[∇huh]]F‖0,F‖ε 1

2 ∇w‖0,TF

� ε− 1
2 h

3
2
F‖[[∇huh]]F‖0,F (‖ε 1

2 ∇w‖0,TF + ‖w‖0,TF ),

where we have used the trace inequality ‖w‖0,F � ‖w‖
1
2
0,TF

‖w‖
1
2
1,TF

valid for all w ∈
H1(Ω). Furthermore, if F ⊂ ∂Ωout, using (2.6), (2.10) and (4.2) yields∫

F
β·n(uh − vh)w � ‖uh − vh‖0,F‖|β·n| 1

2 w‖0,F

�

⎛
⎜⎝ ∑

F ′∈FOs
T (F)

hF ′ ‖[[∇huh]]F ′ ‖0,F ′

⎞
⎟⎠ ‖|β·n| 1

2 w‖0,F

�

⎛
⎜⎝ ∑

F ′∈FOs
T (F)

h
1
2
F ′ max(ε

1
2 , αF ′)‖[[∇huh]]F ′ ‖0,F ′

⎞
⎟⎠ ‖|β·n| 1

2 w‖0,F .
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Collecting the above inequalities yields

ah(uh − vh, w) �

⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

‖w‖εβσ,Ω .

(5) Owing to Steps (1)–(4) above, it is inferred that

‖u − vh‖εβσ,Ω �

⎛
⎜⎝ ∑

T ∈Th

[ηT (uh)2 + δT (uh)2] +
∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

.

Using (2.10), (4.3) and the shape-regularity of the mesh family yields

‖ε 1
2 ∇h(uh − vh)‖0,Ω + ‖uh − vh‖0,Ω �

⎛
⎜⎝ ∑

F∈F i
h

(εhF + h3
F )‖[[∇huh]]F‖2

0,F

⎞
⎟⎠

1
2

�

⎛
⎜⎝ ∑

F∈F i
h

(εhF + hFα2
F )‖[[∇huh]]F‖2

0,F

⎞
⎟⎠

1
2

.

Moreover, for all F ∈ F ∂
h , owing to (2.6), (2.10) and (4.2),

‖|β·n| 1
2 (uh − vh)‖0,F �

∑
F ′∈FOs

T (F)

hF‖[[∇huh]]F ′ ‖0,F ′

�
∑

F ′∈FOs
T (F)

h
1
2
F ′ max(ε

1
2 , αF ′)‖[[∇huh]]F ′ ‖0,F ′ .

Collecting the above estimates yields

‖uh − vh‖εβσ,Ω �

⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

.

Use the triangle inequality to conclude. �
Let T ∈ Th and let �T denote the union of elements of Th sharing at least a vertex with T . For all

w ∈ V (h), localize ‖w‖εβσ,Ω as follows:

‖w‖εβσ,�T
= ‖ε

1
2 ∇hv‖0,�T + ‖σ 1

2 w‖0,�T +
⎛
⎜⎝ ∑

F∈F�T ∩F ∂
h

‖|β·n| 1
2 w‖2

0,F

⎞
⎟⎠

1
2

,

whereF�T denotes the set of faces of the elements in �T .
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THEOREM 4.2 (Lower bound) For all T ∈ Th ,

ηT (uh) � (1 + ε− 1
2 αT )‖u − uh‖εβσ,�T

+ δ�T (uh), (4.10)

where δ�T (uh) = ∑
T ′∈�T

δT ′(uh), and for all F ∈ F i
h ,

ηF (uh) � ε− 1
2 max(αF , ε

1
2 )

(
‖u − uh‖εβσ,TF

+ inf
zh∈[P1

c (Th)]d
‖ε 1

2 (∇u − zh)‖0,TF

)
. (4.11)

Proof. The upper bound (4.10) is obtained by using the techniques presented in Verfürth (1998). To
prove (4.11), let zh ∈ [P1

c (Th)]d and let F ∈ F i
h . Observe that [[∇huh]]F = [[∇huh − zh]]F . Then,

using (2.6) and the triangle inequality yields

‖[[∇huh]]F‖0,F � h
− 1

2
F ‖∇huh − zh‖0,TF � h

− 1
2

F (‖∇u − ∇huh‖0,TF + ‖∇u − zh‖0,TF ).

The conclusion is straightforward. �
REMARK 4.2 Since αF � 1, the following global lower bound is inferred:

ε
1
2

⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

� ‖u − uh‖εβσ,Ω + inf
zh∈[P1

c (Th)]d
‖ε 1

2 (∇u − zh)‖0,Ω .

Hence, if the exact solution is smooth enough (u ∈ H2(Ω)), the first term in the right-hand side is

bounded by h(ε
1
2 +h

1
2 )‖u‖2,Ω owing to Theorem 3.1, while the second term is bounded by hε

1
2 ‖u‖2,Ω .

5. Numerical results

In this section, two test cases are presented to illustrate the above theoretical results. In both cases,
Ω = (0, 1) × (0, 1) and we consider a shape-regular family of unstructured triangulations of Ω with
mesh size hi = h0×2−i with h0 = 0.1 and i ∈ {0, . . . , 4}. The diffusion coefficient ε takes the
values {10−2, 10−4, 10−6} and the reaction coefficient θ is set to 1. The parameter γ in (2.15) is set to
0.005. While the optimal value for this parameter is problem-dependent, our experience with various
test cases shows that the stabilized method behaves fairly well with values in the range 10−3–10−2, and
that within this range, the method is less sensitive to the actual choice for the value of γ than is the
streamline-diffusion method to the choice of its corresponding parameter.

5.1 Test case 1

Let β = (1, 0)T and choose the data f and g so that the exact solution of (2.1) is

u(x, y) = 1

2

(
1 − tanh

(
0.5 − x

aw

))
, (5.1)

with internal layer width aw = 0.05.
Table 1 presents the convergence results for the error ‖u − uh‖A,Ω ; Nfa denotes the number of

degrees of freedom (i.e. the number of mesh faces) and ω denotes the convergence order with respect to



166 L. EL ALAOUI ET AL.

TABLE 1 Numerical errors and convergence orders for the different values of ε

Mesh ε = 10−2 ε = 10−4 ε = 10−6

i Nfa ‖u − uh‖A,Ω ω ‖u − uh‖A,Ω ω ‖u − uh‖A,Ω ω

0 374 1.04 — 1.01 — 9.99 × 10−1 —
1 1441 4.05 × 10−1 1.40 3.76 × 10−1 1.46 3.71 × 10−1 1.47
2 5621 1.53 × 10−1 1.43 1.29 × 10−1 1.57 1.26 × 10−1 1.59
3 22330 6.02 × 10−2 1.35 4.52 × 10−2 1.52 4.40 × 10−2 1.52
4 88961 2.45 × 10−2 1.30 1.61 × 10−2 1.49 1.55 × 10−2 1.51

the square root of the number of degrees of freedom (or, equivalently, the mesh size for quasi-uniform

meshes). In the advection-dominated regime (ε = 10−4 and ε = 10−6), the error decreases as h
3
2 . In

the intermediate regime (ε = 10−2), the convergence order changes from 3
2 to 1 as the mesh is refined.

These results are in agreement with the estimate derived in Theorem 3.1.
Let η1(uh), η2(uh) and δ(uh) be the global error estimators defined as

η1(uh) =
⎛
⎝ ∑

T ∈Th

ηT (uh)2

⎞
⎠

1
2

, η2(uh) =
⎛
⎜⎝ ∑

F∈F i
h

ηF (uh)2

⎞
⎟⎠

1
2

, δ(uh) =
⎛
⎝ ∑

T ∈Th

δT (uh)2

⎞
⎠

1
2

,

(5.2)

where the local error indicators ηT (uh), ηF (uh) and δT (uh) are defined in (4.6), (4.7) and (4.5), re-
spectively. Since the data are smooth, the data error indicator δ(uh) is evaluated using L2-orthogonal
projections onto the space of (discontinuous) piecewise affine functions. The asymptotic behaviour of
the global error estimators with respect to the number of degrees of freedom is presented in Fig. 1.
The error u − uh measured in the norm ‖·‖εβσ,Ω is also presented in Fig. 1. For the three values of
the diffusion coefficient, the error estimator η1(uh) has approximately the same convergence order as the
error. The data error indicator δ(uh) converges to second order in the diffusion-dominated regime and to
order 3

2 in the advection-dominated regime. The error estimator η2(uh) super-converges in the diffusion-
dominated regime, while its convergence order is close to 1 in the advection-dominated regime. The
efficiency index evaluated as

I = η1(uh) + η2(uh) + δ(uh)

‖u − uh‖εβσ,Ω

, (5.3)

is in the range 8–30 for ε = 10−2, in the range 73–280 for ε = 10−4 and in the range 97–1262 for

ε = 10−6. The increase of the efficiency index is roughly proportional to ε− 1
2 , in agreement with the

theoretical results of Section 4.

5.2 Test case 2

Let Γ1 denote the lower horizontal edge of Ω and let Γ2 denote its left vertical edge. Set β = (2, 1)T,
f = 0, and define the boundary data g on Γ1 ∪ Γ2 such that

g(x, y) = 1

2

(
tanh

(
x

aw

)
+ 1

)
+ 1

2

(
tanh

(
− y

aw

)
+ 1

)
, (5.4)
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FIG. 1. Exact error and global error estimators against degrees of freedom. Top left: ε = 10−2; top right: ε = 10−4; bottom:
ε = 10−6.

FIG. 2. Contour lines of the solution for test case 2. Left: ε = 10−2; centre: ε = 10−4; right: ε = 10−6.

with aw = 0.05. Thus, g ensures a sharp but smooth transition from 0 (on Γ2) to 1 (on Γ1) at the
origin. Owing to the Robin boundary condition, the solution exhibits an inner layer located along the
line {x = 2y}. Figure 2 presents the contour lines of the computed solution for the different values of ε.
Owing to the maximum principle, the exact solution is comprised between −1 and 0. On the finest mesh,
the approximate solution exhibits an overshoot (respectively, undershoot) of 2 × 10−5 (respectively, 0)
for ε = 10−2, 8 × 10−2 (respectively, 1 × 10−1) for ε = 10−4 and 1 × 10−1 (respectively, 1 × 10−1)
for ε = 10−6.
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To refine the mesh adaptively using the local error indicator ηT (uh), the following algorithm is
considered:

(i) Construct an initial mesh T 0
h . Set i := 0.

(ii) Compute the approximate solution ui
h on T i

h and compute the local error indicators ηTi (u
i
h) for

all Ti ∈ T i
h .

(iii) If the global error is sufficiently small, stop; otherwise, compute the quantities

ĥTi = l(ηTi (u
i
h))hTi ,

where l(ηTi (u
i
h)) = 1

2 if ηTi (u
i
h) � Si and l(ηTi (u

i
h)) = 1 otherwise. The threshold Si is

evaluated as Si = 1
2nti

∑
Ti ∈T i

h
ηTi (u

i
h) where nti denotes the number of triangles in the

mesh T i
h .

(iv) Using the quantities ĥTi to construct a new mesh T i+1
h . Go to Step (ii).

Figure 3 presents the adaptively refined meshes after five iterations of the above algorithm. For the
three values of the diffusion coefficient, the mesh is refined at the origin. In the diffusion-dominated
regime, the mesh is refined around the inner layer and at the outflow layer. In the advection-dominated
regime, the meshes are refined along the inner layer. The refined zone becomes smaller as the diffusion
coefficient ε takes smaller values, indicating that the local error indicator ηT (uh) alone can detect the
inner layer.

Figure 4 presents the asymptotic behaviour of the global error estimators η1(uh) and η2(uh) as a
function of the number of degrees of freedom in the adaptively refined meshes. For of comparison the

error estimators evaluated by setting αS = ε− 1
2 hS and designated by a star superscript are also plotted.

In the diffusion-dominated regime (ε = 10−2), η1(uh) = η∗
1(uh) and η2(uh) = η∗

2(uh) (hence, only two
curves are visible in the top left plot in Fig. 4). Moreover, both error estimators super-converge on the
coarser meshes, and their convergence order relaxes to the expected asymptotic behaviour (order 1) on
the finer meshes. The change from advection-dominated to diffusion-dominated regime is clearly visible
for ε = 10−4; the convergence order of both error estimators is close to 2 (yielding super-convergence)

whenever αS is evaluated as ε− 1
2 hS . The same behaviour is observed for ε = 10−6.

FIG. 3. Adaptive meshes after five iterations. Left: ε = 10−2 and Nfa = 26698; centre: ε = 10−4 and Nfa = 7460; right:
ε = 10−6 and Nfa = 7158.
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FIG. 4. Global error estimators against degrees of freedom. Top left: ε = 10−2; top right: ε = 10−4; bottom: ε = 10−6.

6. Conclusions

In this paper, we have presented an a priori and an a posteriori error analysis for a non-conforming finite-
element method to approximate advection–diffusion equations. The method is stabilized by penalizing
the jumps of the solution and those of its advective derivative across mesh interfaces. The a priori
error analysis leads to (quasi-)optimal error estimates in the mesh size in the sense that keeping the
Péclet number fixed the estimates are sub-optimal of order 1

2 in the L2-norm and optimal in the broken
graph norm for quasi-uniform meshes. These estimates are similar to those obtained with other methods.
A drawback of the present scheme is the presence of face-oriented bilinear forms leading to a discretiza-
tion stencil larger than that resulting from the use of the Crouzeix–Raviart finite element. When solving
non-linear problems, e.g. the Navier–Stokes equations, these terms can be treated in the framework of
a non-linear iterative solver thus avoiding the widening of the stencil; see, e.g. Ouazzi & Turek (2005).
Finally, the a posteriori error analysis leads to semi-robust error indicators, meaning that the factor be-
tween the lower and upper bounds scales as the square root of the Péclet number. The present analysis
provides the first semi-robust a posteriori error estimator in a non-conforming setting and can be viewed
as a first step towards establishing robust a posteriori error estimators in this setting.
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