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THE CONVERSE OF SCHUR’S LEMMA IN GROUP

RINGS

M. Alaoui and A. Haily

Abstract

In this paper, we study the structure of group rings by means
of endomorphism rings of their modules. The main tools used
here, are the subrings fixed by automorphisms and the converse
of Schur’s lemma. Some results are obtained on fixed subrings
and on primary decomposition of group rings.

1. Introduction and Notations

Let M be a module over a ring R. If M is simple, then Schur’s lemma
states that EndR(M) is a division ring (a skew field). However, the
converse of this result does not hold in general, even when R is artinian.

Definition 1. We shall say that a ring R has the CSL property (ab-
breviation of: Converse of Schur’s Lemma), or that R is a CSL-ring,
if every module is simple whenever its endomorphism ring is a division
ring.

In [6], we have shown that a perfect ring R is a CSL-ring if and only
if R is primary decomposable in the sense of [4]. In this note, we shall
give some characterizations of perfect and primary decomposable group
rings. To this aim, we shall use the results of [6] and [1] concerned by
the converse of Schur’s lemma in perfect rings. We start this work with
the following remark:

Let A be a ring, A[G] the group ring of a finite group G over A. If M
is an A[G]-module, then M is an A-module and for every g ∈ G, the
mapping Lg : M → M defined by Lg(x) = gx, is an automorphism of
the A-module M . Let L : G → AutA(EndA(M)) such that g 7→ Lg where
Lg is the inner automorphism of the group AutA(EndA(M)) attached
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to Lg : Lg(u) = LguLg−1 for all u ∈ EndA(M). For each u ∈ EndA(M)
we have:

u∈EndA[G](M) ⇔ u ∈ EndA(M) and u(gx) = gu(x), ∀ g ∈ G, ∀x∈M

⇔ u ∈ EndA(M) and g−1ug = u, ∀ g ∈ G

⇔ u ∈ EndA(M) and LguLg−1 = u, ∀ g ∈ G.

Consequently, EndA[G](M) = EndA(M)G′

where G′ = {Lg | g ∈ G},
hence the results on fixed subrings can be used to study the properties
of EndA[G](M) and it will provide some information on the structure
of A[G].

The work is divided in two parts. In the first, we consider some ring-
theoretical properties which remain true when passing from the fixed
subring RG to the whole ring R. In this context, we study when regu-
lar elements of RG remain regular in R (Corollary 5). The results are
obtained by imposing some condition on G and on R.

In the second part, we apply these results to study the EndA[G](M),
the endomorphism ring of M . This enables us to derive condition on G
that imply the primary decomposability of A[G]. We therefore pursue
the study we made in [1].

(For the terminology and notations used here we refer to [2], [4].)
All rings considered in this work are associative with identity, and all

the modules are left unitary modules. If M is a module over a ring R,
the endomorphism ring of M is denoted by EndR(M).

• A ring R is said to be perfect if it is left and right perfect.

• A ring R is said to be primary, if the factor ring R/J(R), where
J(R) denotes the Jacobson radical of R, is simple Artinian. Any primary
left or right perfect ring is isomorphic to a full matrix ring over a local
ring [4].

• A right or left perfect ring R is said to be primary decomposable,
if it is isomorphic to a (finite) product of primary rings.

• It can be shown that, for a perfect and CSL-ring R, each factor ring
of R is primary decomposable. This is true because a CSL-property is
conserved by passing to factors.

• If M is an abelian group, G a group of automorphisms of M , we
write MG = {x ∈ M | σ(x) = x, ∀σ ∈ G} for the set of elements of M
fixed by G. This is clearly a subgroup of M . If L is a subgroup of M
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stable by G (G-stable), we note also LG = {x ∈ L | σ(x) = x, ∀σ ∈ G}.
Notice that if G = HP , where H and P are two subgroups of G such
that H is normal in G, then MG = (MH)P .

• For every n ∈ N
∗, we note Tn(M) = {x ∈ M | nx = 0} the n-tor-

sion subgroup of M . This is a fully invariant subgroup of M , and
if Tn(M) = 0, we say that M is n-torsion-free. M is said to be
torsion free, if M is n-torsion-free for every n ∈ N

∗.

2. CSL-property in group rings

Lemma 2. Let M be an abelian group, p a prime integer and G a finite
p-group of automorphisms of M . If MG = 0, then M is p-torsion free.

Proof: Assume that L = Tp(M) 6= 0. Then L is a G-stable p-torsion
group, and it can be viewed as a Fp-vector space, where Fp is the finite
field of p elements and G a group of automorphisms of the Fp-space L.
We are going to show that LG 6= (0).

• Suppose first that G = 〈σ〉 is cyclic of order pk, then

(σ − idM )pk

= σpk

− idM = 0

so σ − idM is nilpotent and hence ker(σ − idM ) 6= 0. This implies
that LG 6= 0.

• We now argue by induction on |G| the order of G. If |G| = p, then
G is a cyclic p-group; we apply the last situation.

Let us assume that the lemma holds for p-groups of order < pk

where k > 1. If G is a p-group of order pk, then by elementary group
theory, G contains a normal subgroup H of order pk−1. Hence G/H is
cyclic. Put G/N = gr〈σ〉. We have G = N ∪Nσ∪Nσ2 ∪· · · ∪Nσp−1 so
G = N.H where H = gr〈σ〉, the subgroup generated by σ. Now using
the induction hypothesis, one obtains LN 6= 0. Thus, since H is cyclic,

the last case show that (LN )H 6= (0) so LG = (LN)H

6= (0).

We will need the following version of Bergman-Isaacs’s theorem:

Theorem 3 ([3] or [14, Corollary 2.5.53]). Let R be a ring not nec-
essarily unitary and G a finite group of automorphisms of R. If R is
|G|-torsion free and R is not nilpotent, then RG 6= 0.

Recall that for a finite group G and a prime integer p we say that
g ∈ G is a p′-element, if the order of g is prime to p. Moreover, if the
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set H of p′-elements is a subgroup of G, then H is normal in G and
G = HP , where P is a p-Sylow subgroup of G.

Theorem 4. Let R be a semiprime ring, G a finite group of automor-
phisms of R. Assume that for every prime integer p for which Tp(R) 6= 0,
the set of p′-elements of G is a subgroup of G. Then for every G-stable
nonzero left or right ideal I we have IG 6= 0.

Proof: • Let I be a nonzero G-stable left (resp. right) ideal. If I is torsion
free, since R is semi prime then the Bergman-Isaacs theorem (see [3] or
Theorem 3 or [14, Theorem 2.5.52, p. 198]), says IG 6= 0.

• If I is not torsion free, then T (I) 6= 0 and so A = Tp(I) 6= 0 for
some prime number p dividing |G|. Thus, A is a nonzero p-torsion left
(resp. right ideal) of R. Now, since Tp(I) ⊆ Tp(R), by hypothesis, we
have G = HP where H is a normal p′-subgroup of G and P is a Sylow
p-subgroup. Thus, AG = (IH)P . Since R is semiprime, then A is not
nilpotent and the Bergman-Isaacs theorem implies L = AH 6= 0. Now
Lemma 2 implies AG = LP 6= 0 as required.

The same argument is valid if we change the word “left” by
“right”.

Recall that a ring R is said to be a quotient ring, if every regular
element of R is invertible. Quotient rings are called classical rings in [9].

Corollary 5. Let R be a semiprime ring, G a finite group of automor-
phisms of R. Assume that for every prime integer p such that R has
p-torsion elements, the set of p′-element of G is a subgroup of G. Then:

(i) Every left (resp. right) regular element in RG is left (resp. right
regular) in R.

(ii) If R is a quotient ring then so is RG.

Proof: (i) Let a ∈ RG left regular in RG suppose that a is not left regular
in R then, I = Annd(a) = {b ∈ R : ab = 0} is right ideal, G-invariant
since ab = 0 ⇒ aσ(b) = σ(ab) = 0, ∀σ ∈ G. Since R is semiprime,
by Theorem 3, IG 6= 0. Hence there exists a nonzero b ∈ RG such
that ab = 0, contradiction.

(ii) If a ∈ RG is left and right regular in RG, then by (i), a is left and
right regular in R. Since R is a quotient ring, a is invertible in R. Thus,
there is c ∈ R such that ac = ca = 1. For every σ ∈ G, aσ(c) = σ(c)a=1.
Thus σ(c) = c for all σ ∈ G and hence a is invertible in RG.

We can now prove the main theorem:
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Theorem 6. Let A a commutative and perfect ring, G a finite group.
The following assertions are equivalents:

(i) A[G] is a primary decomposable ring.
(ii) A[G] is CSL-ring.
(iii) For each prime number p such that Tp(A) 6= 0, there exists a p′-sub-

group H of G, and a p-Sylow subgroup P of G such that: G = HP .

Proof: • Since G is finite group and A is perfect ring, then the group
ring A[G] is perfect (cf. [13] or [15]). The equivalence of (i) and (ii) is a
consequence of [6, Theorem 3].

• (i) ⇒ (iii) Let p a prime number such that Tp(A) 6= 0. We have pA
is proper ideal of A. By Zorn’s lemma, pA is contained in a maximal
ideal I. Hence the factor ring A/I = K is a field (commutative) of
characteristic p. Since A[G] is a primary decomposable ring, so is K[G]
(see the Introduction). Now, we can apply the results of [1]: there
exists a p′-subgroup H of G, and a p-Sylow subgroup P of G such that:
G = HP .

• (iii) ⇒ (ii) Let M a A[G]-module such that D = EndA[G](M) is a
division ring. We are going to show that M is a simple A[G]-module.

First, put I = AnnA(M), the annihilator of M in A and show, that
I is a maximal ideal of A. Since A is commutative, then for each a ∈ A,
the map ρa : M → M , m 7→ ρa(m) = am is an endomorphism of the
A[G]-module M and so the map ρA → EndA[G](M), a 7→ ρ(a) = ρa is
a homomorphism of rings. It is clear that I is the kernel of ρ. It follow
that the factor ring A/I is isomorph to a subring of a division ring D.
Hence A/I is a domain so the ideal I is prime. But A is perfect by
hypothesis; so I is maximal and K = A/I is a commutative field.

Now, let N be a nonzero submodule of the A[G]-module M , and
consider the set I = {u ∈ EndK(M) | u(N) = 0}. Then I 6= 0. However,
for each u ∈ I, g ∈ G and x ∈ N we have: LguLg−1(x) = gu(g−1x) = 0
since N is a A[G]-submodule of M . This show that I is a nonzero left
ideal G′-invariant of EndA(M) where G′ = {Lg | g ∈ G}.

Let R=EndK(M)=EndA(M) (because K =A/I and I = AnnA(M)).
Then R is a von Neumann regular ring and hence semiprime. But G′ =
L(G) is a group of automorphisms of R, homomorphic image of G; by

Theorem 3 we have IG′

6= 0. Thus, it exists a nonzero u lie in R such
that u is G′-invariant: u ∈ EndK[G](M). Since EndA[G](M) is a division
ring, so it is for EndK[G](M). Finally, N = 0 because u(N) = 0.
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As application, we can give a new characterization of nilpotent fi-
nite groups using a primary decomposition of the group ring (Z/nZ)[G],
n ∈ N

∗:

Corollary 7. Let G be a finite group of order n. Then, (Z/nZ)[G] is
primary decomposable, if and only if, G is nilpotent group.
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