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PERFECT RINGS FOR WHICH THE CONVERSE OF
SCHUR’S LEMMA HOLDS

A. Haily and M. Alaoui

Abstract
If M is a simple module over a ring R then, by the Schur’s lemma,
the endomorphism ring of M is a division ring. However, the
converse of this result does not hold in general, even when R is
artinian. In this short note, we consider perfect rings for which
the converse assertion is true, and we show that these rings are
exactly the primary decomposable ones.

1. Introduction

Let M be a module over a ring R. If M is simple, then the Schur’s
lemma states that EndR(M) is a division ring (a skew field). The con-
verse of this statement is false. For example, if R is an integral (commu-
tative) domain which is not a field, then its quotient field Q, considered
as an R-module, is not simple, although EndR(Q) ∼= Q is a division ring.

For an example in the artinian case, one can take: R = ( K K
0 K ), the

ring of upper triangular 2 × 2 matrices over a field K. Then for the
R-module M = Re, where e = ( 0 0

0 1 ), we have EndR(M) ∼= K, but M is
not simple.

Definition 1.1. We shall say that a ring R has the CSL property (abre-
viation of: Converse of the Schur’s Lemma), or that R is a CSL-ring,
if every module is simple whenever its endomorphism ring is a division
ring.

The CSL property, has been studied by some authors. In [4], Ware
and Zelmanowitz, considered modules with simple endomorphism ring
over a commutative ring. From their results, it can be shown that a
commutative ring R is a CSL-ring iff every prime ideal of R is maximal.
In [3] some classes of noncommutative von Neumann regular rings with
the CSL property has been studied.
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The full class of CSL-rings seems to be very hard to characterize, the
present note deals with perfect CSL-rings. Our main result is:

Theorem 1.2. For a perfect ring R, the following assertions are equiv-
alent:

(i) Every R-module with semiprime endomorphism ring is semisimple.
(ii) Every R-module with von Neumann regular endomorphism ring is

semisimple.
(iii) R is a CSL-ring.
(iv) R is isomorphic to a finite product of primary rings.

2. Preliminaries and notations

(For the terminology and notations used here we refer to [1], [2].)
Throughout this paper, all rings are associative with identity, and

all modules are left unitary modules. If M is a module over a ring R,
the endomorphism ring of M is denoted by EndR(M). The socle of M ,
i.e. the sum of all simple submodules of M , is denoted by Soc(M).

A ring R is said to be perfect if it is left and right perfect. Over a per-
fect ring, every nonzero module has a maximal and a simple submodule.

A ring R is said to be primary, if the factor ring R/J(R), where J(R)
denotes the Jacobson radical of R, is simple artinian. Any primary left or
right perfect ring is isomorphic to a full matrix ring over a local ring [2].

A right or left perfect ring R is said to be primary decomposable, if
it is isomorphic to a (finite) product of primary rings. It can be shown
that R is primary decomposable, if and only if, every idempotent which
is central modulo the Jacobson radical is central.

A ring R is said to be von Neumann regular (abbreviated VNR), if
for every x ∈ R there exists y ∈ R such that xyx = x. An important
example of a VNR ring is the endomorphism ring of a semisimple module.

3. The proofs

(i) ⇒ (ii) is obvious since every VNR ring is semiprime.

(ii) ⇒ (iii). If EndR(M) is a division ring, then it is VNR. So M
is semisimple by hypothesis. Since M is indecomposable, it is therefore
simple.

(iv) ⇒ (i). It is easy to see that any direct product of a finite number
of rings verifying (i) has this property. Hence to show that (iv) implies
(i), it suffices to show that every perfect primary ring verifies (i). Let R
be such a ring. If M is any nonzero R-module, then M has a maximal
submodule N , and a simple submodule S. Since R is primary, R has a
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unique isomorphism class of simple modules, so there exists an R-module
isomorphism σ : M/N → S. If π : M → M/N and ı : S → M denote
respectively the canonical surjection and the canonical injection, then
u = ı ◦ σ ◦ π is a nonzero endomorphism of M such that u(N) = 0 and
u(M) ⊂ S.

Now suppose that M is not semisimple, then M contains a proper es-
sential submodule E which is contained in a maximal submodule N . By
what has been proved previously, there exists a nonzero u ∈ EndR(M)
such that u(N) = 0 and u(M) ⊂ Soc(M). Since E is essential, we
have Soc(M) ⊂ E and then u(Soc(M)) ⊂ u(N) = 0. Now for every
v ∈ EndR(M), (u ◦ v ◦u)(M) ⊂ (u ◦ v)(Soc(M)) ⊂ u(Soc(M)) = 0. This
proves that u ◦ v ◦ u = 0 for every v ∈ EndR(M); so that EndR(M) is
not semiprime.

(iii) ⇒ (iv). To prove this implication, we need a preliminary result.

Lemma 3.1. Let M be a finitely generated module over a perfect ring R.
Suppose that HomR(N, Soc(M)) = 0 for every nonsimple submodule N
of M . Then EndR(M) is a division ring.

Proof: Suppose that EndR(M) is not a division ring, then there exists
u ∈ EndR(M) such that u is nonzero and noninvertible. Since M is
finitely generated over a perfect ring, u is not injective. Let N be a
submodule of M such that Ker ⊂ N and N/ Keru is simple. If v = u|N
denotes the restriction of u to N , then Im v ∼= N/ Ker v so Im v is simple.
Thus Im v ⊂ Soc(M). This proves that Hom(N, Soc(M)) 	= 0.

We are now going to prove the implication (iii) ⇒ (iv). Suppose on
the contrary that R is a CSL-ring which is not primary decomposable.
Then there exists an idempotent e ∈ R central modulo J = J(R) but
not central. Either R(1 − e)Re 	= 0 or ReR(1 − e) 	= 0. Without loss
of generality, we can suppose that R(1 − e)Re 	= 0. Since R(1 − e)Re 	=
J(1 − e)Re, we can pick an element x ∈ R(1 − e)Re\J(1 − e)Re, and
consider the left ideal I maximal with respect to:

J(1 − e)Re ⊂ I ⊂ Re and x /∈ I.

Then, the module M = Re/I is finitely generated with simple socle equal
to S = Rx + I/I. Since J(1− e)Re ⊂ I, we have J(1− e)M = 0. Hence
(1 − e)M ⊂ S. On the other hand, eR ⊂ Re + J , thus eR(1 − e)Re ⊂
J(1 − e)Re, implying eS = 0.

Now let N be a submodule of M such that HomR(N, S) 	= 0 and
u : N → S a nonzero homomorphism. We have u(N) = S and u((1 −
e)N) = (1− e)S 	= 0. Since (1− e)N ⊂ S, then u(S) 	= 0. Consequently
Keru = 0 and u is therefore an isomorphism. So N is necessarly simple.
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By Lemma 3.1, EndR(M) is a division ring. Since R is a CSL-ring, M
is simple. So M = S and eM = eS = 0, a contradiction.
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