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Evolutionary game theory is one of the key paradigms behind many scientific disciplines from
science to engineering. Previous studies proposed a strategy updating mechanism, which successfully
demonstrated that the scale-free network can provide a framework for the emergence of cooperation.
Instead, individuals in random graphs and small-world networks do not favor cooperation under
this updating rule. However, a recent empirical result shows the heterogeneous networks do not
promote cooperation when humans play a Prisoner’s Dilemma. In this paper, we propose a strategy
updating rule with payoff memory. We observe that the random graphs and small-world networks
can provide even better frameworks for cooperation than the scale-free networks in this scenario.
Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor
a necessary condition for the widespread cooperation in complex networks. Also, the topological
structures are not sufficed to determine the level of cooperation in complex networks.

PACS numbers:

INTRODUCTION

The long-term nature of competition leads to a con-
fusing outcome that an agent’s payoff does not depend
on a decision in one round but on a reasonable updating
rule [1–3]. Thus in evolutionary game theory, the updat-
ing rule has played a key role, for instance, the well known
Tit-for-Tat [4], Pavlovian strategies [5], Win-Stay-Lose-
Shift [6, 7], Stochastic reactive strategies [8], among oth-
ers. Borrowing the concept of complex networks [9, 10],
people realized that abstracting interpersonal relation-
ships into social networks [11, 12] may be an effective
way to understand games in real human society.

To understand the pattern of games on social net-
works, a variety of network models were then intensively
investigated [13], such as small-world networks [14, 15]
and scale-free networks [14, 16]. In these networks, the
group of opponents surrounding an individual is inter-
preted as its neighbors. The limited local interactions
are the interactions restricted among the individual and
their neighbors. As a successful attempt, the updating
rule proposed by Santos and Pacheco [14, 17–19] stood
out. Simulation results [14] show that the appearance
of connected hubs in scale-free networks promotes the
emergence of large-scale cooperation. This conclusion is
striking in that it helps researchers find an origin of co-
operative behavior in social networks. Also, it indicates
that the interconnected hubs are usually occupied by co-
operators, when selection favors cooperation. In San-
tos and Pacheco’s updating rule, an individual randomly
picks a neighbor as its reference. If the neighbor’s payoff
is higher than the individual, he/she adopt the neighbor’s
strategy with a certain probability. Given its feature of

promoting cooperation in the networks with a power-law
degree distribution [14, 17, 18], the rule is extensively em-
ployed in the following works [15–20]. Interestingly, their
conclusion that degree-heterogeneity promotes the level
of cooperation was then questioned theoretically in the
public goods game [21]. This difference indicates that the
game model is a non-trivial factor as well. Indeed, the
influence from updating rules or dynamics may be more
influential [22–24]. Next, an empirical work reported by
C. Gracia-Lázaro et al directly provides a realistic exam-
ple [25].

In this paper, we discuss an evolutionary game with a
pure rational agent-based updating mechanism. In this
game, we consider a local deterministic nature selection.
An individual always adopts a local better-performing
strategy in the next round of game. Briefly, in a group
including an individual and their neighbors, if the coop-
erative individuals can get a higher average payoff than
the defective ones, the central individual will be a co-
operator in the next round and vice versa. As in the
well-mixed populations [1, 26], for all the games investi-
gated in this paper, defection dominates the population
when the temptation to defect is powerful. However,
for our updating rule, payoff memory [27] can remark-
ably promote the levels of cooperation in the Watts and
Strogatz’s small-world network (WS) [28] and random
graphs, which clearly exceed that in the Barabási and
Albert’s scale-free network (BA) [29]. Here, the pay-
off memory denotes the number of rounds during which
the payoff of an individual is aggregated. Our observa-
tion indicates that degree heterogeneity may be neither
a sufficient condition nor a necessary condition for the
widespread cooperation in complex networks. In this re-
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spect, our conclusion is consistent with the recent empir-
ical result [25].
To stay consistent with the previous studies, we adopt

the Prisoner’s Dilemma (PD) as the game model. As a
heuristic framework, the Prisoner’s Dilemma describes a
commonly identified paradigm in many real-world situa-
tions [30–33]. It has been widely studied as a standard
model for the confrontation between cooperative and self-
ish behaviors. The selfish behavior here is manifested
by a defective strategy, aspiring to obtain the greatest
benefit from the interaction with others. This PD game
model [1, 2] considers two prisoners who are placed in
separate cells. Each prisoner must decide to confess (de-
fect) or keep silence (cooperate). A prisoner may receive
one of the following four different payoffs depending on
both its own strategy and the other prisoner’s strategy.

• T (temptation to defect) for defecting a cooperator.

• R (reward for mutual cooperation) for cooperating
with a cooperator.

• P (punishment for mutual defection) for defecting
a defector.

• S (sucker’s payoff) for cooperating with a defector.

Normally, the four payoff values are defined as: T > R >

P ≥ S. At the next round, the prisoner will know the
strategy of the other one in the previous round. It can
then adjust its strategy according to the game updating
rule. For the case that two individuals just play the pris-
oner’s dilemma for one round, there is a safe strategy, i.e.,
a prisoner i always gets a payoff not less than his/her op-
ponent if s/he defects. i’s strategy is denoted by Ωi. Ωi

takes vectors (1, 0)T and (0, 1)T for the cooperative and

defective strategy respectively. For convenience, (1, 0)
T

and (0, 1)T are denoted by ΩC and ΩD hereafter. In one
round of game playing with the other prisoner j, payoff
Gi can be rewritten as

Gi = ΩT
i

(

R S

T P

)

Ωj . (1)

UPDATING RULE

In our updating rule, the PD is repeated in the follow-
ing way: in the first stage, a PD is played by every pair
of individuals connected by a link in the network. For an
individual i in the nth round, their payoff reads as

Gi(n) =
∑

j

Aij × ΩT
i (n)

(

R S

T P

)

Ωj(n), (2)

whereAij is an entry of the adjacency matrix of networks,
taking values Aij = 1 (i = 1, 2, ..., the size of networks)
whenever the individual i and j are connected and Aij =

0 otherwise. Each individual then updates their accumu-
lated payoff, which is the sum of payoffs they receive from
the last rounds in memory. The sum of payoffs for all the
cooperative neighbors (defectors) of i in the nth round is
denoted by Ci(n) (Di(n)) as shown in Fig. 1. We define
λ as the span of the payoff memory. For λ = 3, Gi(n)
keeps aggregating for 3 rounds. At the beginning of the
4th round, the whole payoff system is reset. The pur-
pose of introducing the payoff memory into the model is
to simulate a points system of accumulating the players’
payoffs. For example, a season in the English Premier
League normally lasts 38 rounds, in which 38 denotes
the memory span. In the second stage, each individ-
ual updates their strategy based on their payoff and all
their neighbors’ payoffs. Consider a group of individuals
including an individual i and all i’s neighbors, if the co-
operative individuals in this group have a higher average
payoff than the defective ones, i will be a cooperator in
the next round, and vice versa. If the cooperative indi-
viduals’ average payoff equals the defective ones’ average
payoff, i will keep its strategy unchanged. For the co-
operative neighbors at the nth round, the sum of their
payoffs reads as:

Ci(n) =
∑

j

∑

k

Aij×
(

ΩT
C · Ωj(n)

)

×

n
∑

t=r×λ+1

Gk(t), (3)

where r× λ+1 ≤ t ≤ (r+1)× λ and Gk(t) =
∑

j Ajk ×

Ωj
T (n)

(

R S

T P

)

Ωk(n). The parameter r = ⌊n−1
λ

⌋. The

function ⌊x⌋ returns the largest integer lower than x. For
the defective neighbors, the sum of their payoffs reads as:

Di(n) =
∑

j

∑

k

Aij×
(

ΩT
D · Ωj(n)

)

×

n
∑

t=r×λ+1

Gk(t). (4)

Thus the average payoffs of the cooperative and defective
neighbors are

Φi(n) =

(

ΩT
C · Ωi(n)

)

Gi(n) + Ci(n)
(

ΩT
C · Ωi(n)

)

+
∑

j Aij ×
(

ΩT
C · Ωj(n)

) (5)

and

Ψi(n) =

(

ΩT
D · Ωi(n)

)

Gi(n) +Di(n)
(

ΩT
D · Ωi(n)

)

+
∑

j Aij ×
(

ΩT
D · Ωj(n)

) , (6)

respectively.
For Φi(n) = Ψi(n), Ωi(n + 1) = Ωi(n). For Φi(n) 6=

Ψi(n), we derive

Ωi(n+ 1) =

(

|X(n)+1|
2

|X(n)−1|
2

)

, (7)

where

X(n) =
Φi(n)−Ψi(n)

|Φi(n)−Ψi(n)|
. (8)
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FIG. 1: Illustration of strategy updating rule. For an in-
dividual i with degree 9, it has 5 defectors (blue circles)
and 4 cooperators (red hexagons) as its neighbors in the
nth round. The payoff of each neighbor is aggregated in
the last n − r × λ rounds. t is a value in the time re-
gion [r × λ+ 1, (r + 1) × λ]. Gx(n) denotes the aggregated
payoff of neighbor x (x = 1, 2, ..., 9), receiving from the
(r × λ + 1)th round to the nth round. Based on Eqs. 5 and

6, Φi(n) =

∑

n

t=r×λ+1
G1(t)+G2(t)+G3(t)+G4(t)

4
and Ψi(n) =

∑

n

t=r×λ+1
G5(t)+G6(t)+G7(t)+G8(t)+G9(t)+Gi(t))

6
.

The analytical process can be applied to other games by

changing the payoff matrix

(

R S

T P

)

. One can find out

that the evolution process is deterministic after setting
the initial roles.

GAMING ON SOCIAL NETWORKS

We consider four classes of networks, the WS small-
world network [28], BA scale-free network [29], regular
and random graph. We generate ten WS networks, BA
networks, regular graphs, and random graphs by random
seeds. The regular graphs are formed by a number of
individuals with an identical degree 6. The WS networks
and random graphs are generated by randomly rewiring
10% and 100% of the links, respectively. Each network
has finite 1 024 individuals and 3 072 links. The BA
networks are grown by attaching new individuals to m =
3 existing individuals.

For the PD, the payoff parameters are set as T = b,
R = 1, and P = S = 0, where 1 < b ≤ 2 represents the
temptation to defect [14]. The larger b is, the more favor-
able defection becomes. We denote F as the frequency
of cooperators after reaching a network gaming equilib-
rium. We run 51 000 time steps for each simulation, in
which 50, 000 steps to guarantee that the system reaches
a dynamical equilibrium. Next, we measure and average
F from 50 000 to 51 000 steps, in which the standard
deviation of F is less than 0.1. For a given network, we
initially assign a fraction of individuals as cooperators

at random, and the remaining individuals as defectors.
The influences of the initial frequency of cooperators are
shown in Fig. 2.
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FIG. 2: Average frequency 〈F 〉 (solid lines), distribution of
frequencies of cooperators (dots) as a function of initial fre-
quency of cooperators for the Prisoner’s Dilemma. We run
100 simulations for each of the parameter values for the game
on each of the 10 networks. Thus each plot in the figure cor-
responds to 1 000 simulations with λ = 30 and b = 1.9. The
colored circles are the binned data of F . For example, a dec-
imal in [0.25, 0.34) is approximated with 0.3. 〈F 〉 is obtained
directly from the simulations. We consider four network mod-
els: (a) shows the simulation results obtained on the BA scale-
free networks, which are generated bym0 = m = 3 [29], where
m0 denotes the size of the initial fully connected network and
m denotes the number of links among a new node and the
existing individuals in the network; (b) shows the simulation
results obtained on the regular graphs, which are formed by
1 024 identical individuals of degree 6; (c) shows the simula-
tion results obtained on the WS small-world networks, which
are generated by randomly rewiring 10% of the links in the
regular graphs; (d) shows the simulation results obtained on
the random graphs, which are generated by randomly rewiring
all the links [28].

Fig. 2 shows that the initial frequencies of cooperators
have a weak connection with 〈F 〉, which is the average
frequency of cooperators in gaming equilibrium. For dif-
ferent initial frequencies of cooperators, after a period
of initial turbulence, the system can always reach a dy-
namical equilibrium, where the number of cooperators
(or defectors) is stabilized at the particular value with
minimum fluctuation. Thus we set the initial frequency
of cooperators to 0.5 in all the following simulations. In
Fig. 2(c)(d), one can observe the WS small world net-
works and random graphs are clearly proper platforms of
cooperation.

Fig. 3 shows 〈F 〉 as a function of the payoff memory
span, λ, for the four types of networks. The fraction
of cooperators in a gaming equilibrium is determined by
the network topology, game model, updating rule, pay-
off memory span and game parameters. The five factors
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FIG. 3: Average frequency 〈F 〉 (solid lines), distribution of
frequencies of cooperators (dots) as a function of λ for the
prisoner’s dilemma with b = 1.9. The column (a), (b), and
(c) show the simulation results for the Nowak and May’s up-
dating rule [34], Santos and Pacheco’s updating rule [14], and
our updating rule, respectively. The initial frequency of co-
operators is set to 0.5. (I), (II), (III), and (IV) show the
simulation results for BA scale-free networks, regular graphs,
WS small-world networks, and random graphs, respectively.

govern the level of collaboration together. For b = 1.9,
panel I-(c) and II-(c) show that 〈F 〉 is close to 0 in the
BA scale-free networks and regular graphs. This obser-
vation indicates that collaboration is highly restrained in
the system governed by our updating rule, even when
the payoff memory is large. Instead, 〈F 〉 can keep a rel-
atively high level in the WS networks (see panel III-(c))
and random graphs (see panel IV-(c)) when the payoff
memory is large. For the Santos and Pacheco’s updat-
ing rule and the Nowak and May’s updating rule, just
few cooperators can survive in the regular and random
graphs with a large payoff memory. The observations
indicate that our model is a counter example of the pre-
vious conclusion [16] that the scale-free networks provide
a uniform platform of cooperation. Again, the behaviors
observed in the WS small-world networks and random
graphs indicate that even in a network without clear de-
gree heterogeneity, cooperators still can survive in it.
Although we change both the updating rule and pay-

off memory to show the observations, these behaviors
actually originate from the updating rule, since the pay-
off memory promotes cooperation in the social networks
governed by the updating rules mentioned in this pa-
per. For the Santos and Pacheco’s updating rule with
the payoff memory, the BA scale-free network is still the
best platform of cooperation compared with the other
topologies mentioned in this paper. In the BA scale-free
network governed by our updating rule, the attraction of
two extreme states F = 0 and 1 is much stronger than
that in the WS small-world network and random graph.
When the temptation to defect is powerful (b = 1.9), the
basin of attraction of full cooperation is smaller than full

defection. However, in the WS small-world network and
random graph, the attraction of full cooperation and de-
fection does not exist. Thus the level of cooperation in
the BA scale-free network is clearly lower than that in the
WS small-world network and random graph. When the
temptation to defect is not so large, for example b = 1.5,
the basin of attraction of full defection is not so large any
more. Fig. 4 shows that the payoff memory dramatically
promotes the level of cooperation in the BA networks for
b = 1.5. In this case, the BA networks are still the proper
platform of cooperation. For b = 1.6 and 1.7, the basin
of attraction of full defection is large enough to restrain
the level of cooperation in the BA networks. Thus the
valid range of b for our observations in Fig. 3 is roughly
[1.6, 2.0].
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FIG. 4: Average frequency 〈F 〉 (solid lines), distribution of
frequencies of cooperators (dots) as a function of λ for the
prisoner’s dilemma with b = 1.5 (the first row), 1.6 (the sec-
ond row), and 1.7 (the third row), respectively. (I), (II), and
(III) show the simulation results for BA scale-free networks,
WS small-world networks, and random graphs, respectively.

By comparing the BA network with the uncorrelated
network (configuration model [35]), previous studies [14]
indicated that hubs are preferred by the cooperators. In-
terconnected hubs protect cooperation effectively [14].
These two features whereas don’t exist in our system.
Fig. 5 shows the distributions of cooperators and de-
fectors for BA networks, WS small-world networks, and
random graphs, respectively. For these three classes of
networks, one can observe that the distributions of co-
operators are similar to the degree distributions of the
networks. These observations indicate that cooperators
do not preferentially occupy the hubs any more. They
are evenly distributed.
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FIG. 5: Degree distributions of cooperators and defectors in
different topological structures. We consider (a) BA scale-
free networks, (b) WS small-world networks, and (c) random
graphs. For all the topological structures, we set b = 1.9 and
λ = 30. Note that (a) is a double-logarithmic panel.

DISCUSSION

As shown in Fig. 3 I-(b), Santos and Pacheco’s updat-
ing rule [14] dramatically promotes the level of coopera-
tion in the BA scale-free networks, while it restrains coop-
eration in the other networks such as the WS small-world
networks and random graphs. Based on an intuitive local
strategy optimization, we introduce a new strategy up-
dating rule to check whether the network structures are
sufficient to determine the level of cooperation. Through
extensive numerical simulations, we observe the network
structure is just one of the key factors. In a proper con-
dition, the level of cooperation in the WS small-world
networks and random graphs can also exceed that in the
BA scale-free networks.

To create such a proper condition, we consider the pay-
off memory in this paper. Actually, this parameter is not
strange to most of us. In the previous game models, the
payoff memory span used to be set to 1, i.e., an indi-
vidual’s payoff in the current round will be cleared up
after the strategy updating. In this condition, coopera-
tion is highly restrained, even under our updating rule.
With a small enhancement of the memory span, the evo-
lutionary selection starts favoring cooperation. In term
of this behavior, we presented a general explanation in
our previous work [27]. Admittedly, the influence of the
payoff memory is limited. Nevertheless, it is sufficed to
enable the random graphs and small-world networks to
be proper platforms for the emergence of cooperation.
We believe this example may shed some lights on the
origins of the widespread altruistic behaviors in the non-
scale-free networks.

CONCLUSION

In summary, we have discussed a question whether the
degree heterogeneity promotes the level of cooperation
for the Prisoner’s Dilemma in complex networks. Pre-
vious studies showed that the degree heterogeneity pro-
motes the level of cooperation in the system governed by
a particular strategy updating rule. A recent empirical
study questions this conclusion in the case that humans
play the Prisoner’s Dilemma. In this paper, we have pro-
posed a strategy updating mechanism with payoff mem-
ory. Our simulation results show that the frequency of
cooperators in the random graphs and WS small-world
networks exceeds that in the BA scale-free networks ap-
parently, especially when the temptation to defect is pow-
erful. Our observations indicate that the degree hetero-
geneity is neither a sufficient condition nor a necessary
condition for the emergence of cooperation. In another
word, the scale-free networks do not always promote co-
operation in complex networks. In this respect, our re-
sults confirm the empirical result mentioned above. In
a particular condition, cooperation can be widespread in
any topological structure. Our observations may provide
a better understanding of the widespread cooperation in
the networks without degree heterogeneity.
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