19 research outputs found

    Functional comparison of blood-stage Plasmodium falciparum malaria vaccine candidate antigens

    Get PDF
    The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5

    A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    Get PDF
    SummaryAntigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans

    Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex

    Get PDF
    Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric “RCR-complex”. We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called “R78C”, combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial

    Use of humanised rat basophilic leukaemia cell line RS-ATL8 for the assessment of allergenicity of Schistosoma mansoni proteins.

    Get PDF
    BACKGROUND Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites. METHODOLOGY/PRINCIPAL FINDINGS A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line. CONCLUSION/SIGNIFICANCE This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins

    Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies.

    Get PDF
    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved

    Insights into the design of an improved PfRH5 malaria immunogen using vaccine-induced monoclonal antibodies

    No full text
    The causative agent of the most deadly form of malaria, P. falciparum, was identified over 130 years ago, yet this disease still causes 430,000 deaths each year. Although naturally-acquired immunity exists, it requires a heavy and sustained exposure to the parasite, with most succumbing as young children, before this immunity has fully developed. Effective treatments exist but with small-molecule drug resistance on the rise and little in the way of affordable alternatives, the need for an efficacious malaria vaccine is as great as ever. A successful malaria vaccine is likely to necessitate targeting each stage of the parasite's lifecycle. Immunity directed to the blood-stage, the stage which causes all the symptoms of malaria, is unique in that it would allow for a concomitant development of naturally-acquired immunity along with a reduction in morbidity and mortality. To date, antibody-mediated immunity to the blood stage requires intractably high levels of antibody and this problem is compounded by a paucity of viable candidates with which to effectively target different strains. Other fields of vaccinology, over the past decade, have been employing various structure-based strategies to increase the specific activity of the immune response thus lowering the antibody levels required for protection. However, very few detailed investigations of this kind have been conducted on a P. falciparum vaccine candidate, and certainly none as promising as PfRH5. In a world's first, fully-human antibodies raised in response to PfRH5 vaccination were isolated and extensively characterised, both functionally and structurally with the intention of elucidating the important features necessary to inform the design of an improved PfRH5-based vaccine. Synergistic and antagonistic effects of antibody combinations were noted and highlight new complexities of the immune response to PfRH5, opening the door to unanticipated potential for rational vaccine design.</p

    Insights into the design of an improved PfRH5 malaria immunogen using vaccine-induced monoclonal antibodies

    No full text
    The causative agent of the most deadly form of malaria, P. falciparum, was identified over 130 years ago, yet this disease still causes 430,000 deaths each year. Although naturally-acquired immunity exists, it requires a heavy and sustained exposure to the parasite, with most succumbing as young children, before this immunity has fully developed. Effective treatments exist but with small-molecule drug resistance on the rise and little in the way of affordable alternatives, the need for an efficacious malaria vaccine is as great as ever. A successful malaria vaccine is likely to necessitate targeting each stage of the parasite's lifecycle. Immunity directed to the blood-stage, the stage which causes all the symptoms of malaria, is unique in that it would allow for a concomitant development of naturally-acquired immunity along with a reduction in morbidity and mortality. To date, antibody-mediated immunity to the blood stage requires intractably high levels of antibody and this problem is compounded by a paucity of viable candidates with which to effectively target different strains. Other fields of vaccinology, over the past decade, have been employing various structure-based strategies to increase the specific activity of the immune response thus lowering the antibody levels required for protection. However, very few detailed investigations of this kind have been conducted on a P. falciparum vaccine candidate, and certainly none as promising as PfRH5. In a world's first, fully-human antibodies raised in response to PfRH5 vaccination were isolated and extensively characterised, both functionally and structurally with the intention of elucidating the important features necessary to inform the design of an improved PfRH5-based vaccine. Synergistic and antagonistic effects of antibody combinations were noted and highlight new complexities of the immune response to PfRH5, opening the door to unanticipated potential for rational vaccine design.</p

    Western blot demonstrating antigenicity of the <i>S. mansoni</i> proteins expressed in the WGL system.

    No full text
    <p>Non-purified wheat germ extracts containing <i>in vitro</i> translated IPSE/alpha-1, SmTAL1 or SmTAL2 were separated in a 4–20% SDS-PAGE gel and blotted onto NCM. Separate strips of NCM were treated with anti-TAL1 rabbit serum, anti-TAL2 rabbit serum or anti-IPSE/alpha-1 mouse monoclonal antibody. The negative control (neg. control) was incubated without primary antibody/serum, but with secondary antibody. Membranes were imaged using chemiluminescence and a Fujifilm LAS-4000.</p

    Protective effect of 2M Glucose on the ability of IgE to bind to the high affinity receptor after heating at 56°C for 30 min.

    No full text
    <p>RS ATL8 cells seeded at a density of 50.000 cells per well were sensitised with a 50-fold dilution of Par j 2 serum pool, which had been left unheated or heated either in the presence or in the absence of 2M Glucose. After overnight incubation with the sera, cells were stimulated with optimal concentrations of anti-IgE (1 µg/mL) or Par j 2 recombinant allergen (100 pg/mL) and luciferase production measured after 4 hours. ; *: p<0.05; **: <i>p</i><0.01; ***: p<0.001; n.s.: not significant (Student t-test).</p
    corecore