1,927 research outputs found
Shiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4
Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx-related events and enhance Stx absorption during STEC infection
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed
Bound on Lorentz- and CPT-Violating Boost Effects for the Neutron
A search for an annual variation of a daily sidereal modulation of the
frequency difference between co-located Xe and He Zeeman
masers sets a stringent limit on boost-dependent Lorentz and CPT violation
involving the neutron, consistent with no effect at the level of 150 nHz. In
the framework of the general Standard-Model Extension, the present result
provides the first clean test for the fermion sector of the symmetry of
spacetime under boost transformations at a level of GeV.Comment: 4 pages, 1 figur
Higher Education Scorecards, Performance Based Metrics, and Faculty Compensation
U ovom radu rješavao se problem projektiranja jednokanalnog EKG pojačala. Projektirao se prema ulaznim zahtjevima prema kojima je predviđeno napajanje pojačala baterijom nominalnog napona 3,7 V, mora imati 2 načina rada: dijagnostički (0,05 – 120 Hz) i monitoriranje (1 – 45 Hz), a ulazni filtar mora biti niskopropusni. Kao ulazni filtar odabran je niskopropusni RC filtar. Nakon pojačanja u instrumentacijskom pojačalu, guše se niske frekvencije u Besselovom visokopropusnom filtru. Na kraju se signal dodatno pojačava u neinvertirajućem pojačalu.
Dobiveno je pojačalo karakteristika bliskih zahtijevanim. Izmjeren je EKG na ispitaniku pri čemu je dobiven očekivani signal na izlazu.This thesis is based on a problem of designing a single – channel electrocardiogram. Its design is based on given specifications which include 3,7 V single power supply, low – pass filter in its input stage and ability to work in two different modes chosen by the user: diagnosting mode (0,05 – 120 Hz) and monitoring mode (1 – 45 Hz). The chosen input stage filter is low – pass RC filter. After amplifying the signal in an instrumentation amplifier, low frequencies are attenuated in a high – pass Bessel filter. Finally, the signal is amplified in a non – inverting amplifier.
As a result, the designed ECG amplifier was confirmed to have very close specifications to the ones requested. Finally, ECG was measured on a test subject which resulted in expected output signals
Human intestinal tissue tropism of intimin epsilon O103 Escherichia coli
Human intestinal in vitro organ culture was used to assess the tissue tropism of human isolates of Escherichia coli O103:H2 and O103:H- that express intimin F. Both strains showed tropism for follicle associated epithelium and limited adhesion to other regions of the small and large intestine. This is similar to the tissue tropism shown by intimin gamma enterohaemorrhagic (EHEC) O157:H7, but distinct from that of intimin a enteropathogenic (EPEC) O127:H6. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserve
CMBPol Mission Concept Study: Prospects for polarized foreground removal
In this report we discuss the impact of polarized foregrounds on a future
CMBPol satellite mission. We review our current knowledge of Galactic polarized
emission at microwave frequencies, including synchrotron and thermal dust
emission. We use existing data and our understanding of the physical behavior
of the sources of foreground emission to generate sky templates, and start to
assess how well primordial gravitational wave signals can be separated from
foreground contaminants for a CMBPol mission. At the estimated foreground
minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a
primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small
patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky
we expect the foreground amplitude to exceed the primordial signal by about a
factor of eight at the foreground minimum and on scales of two degrees. Only on
the largest scales does the polarized foreground amplitude exceed the
primordial signal by a larger factor of about 20. The prospects for detecting
an r=0.01 signal including degree-scale measurements appear promising, with 5
sigma_r ~0.003 forecast from multiple methods. A mission that observes a range
of scales offers better prospects from the foregrounds perspective than one
targeting only the lowest few multipoles. We begin to explore how optimizing
the composition of frequency channels in the focal plane can maximize our
ability to perform component separation, with a range of typically 40 < nu <
300 GHz preferred for ten channels. Foreground cleaning methods are already in
place to tackle a CMBPol mission data set, and further investigation of the
optimization and detectability of the primordial signal will be useful for
mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution
to the CMBPol Mission Concept Study, v2, matches AIP versio
Cosmological Constraints on Lorentz Violation in Electrodynamics
Infrared, optical, and ultraviolet spectropolarimetry of cosmological sources
is used to constrain the pure electromagnetic sector of a general
Lorentz-violating standard-model extension. The coefficients for Lorentz
violation are bounded to less than 3x10^{-32}.Comment: 4 pages, accepted for publication in Physical Review Letter
Improving communication between postgraduate researchers and the university library: a case study at De Montfort University Library and Learning Services
A well-established postgraduate researcher development program has existed at De Montfort University for many years. Library and Learning Services include modules on literature searching skills and critical appraisal. However, we recognized that researchers seemed to be disengaged with the services on offer. This concern informed a research project that considered the ways we could communicate better with researchers based on their needs. This paper explores the essential components of successful communication, such as context, timeliness and communication channels. An action-research approach was taken including focus groups and online surveys. The outcomes highlighted three significant crisis points, emphasizing the key times when researchers might need some intervention. The findings of this research identified the distinct needs of Postgraduate Researchers (PGRs) and how relevant and timely communication from the library can meet these needs. It also considers the impact of how communication has improved with researchers as a result of some of our interventions
- …
