25 research outputs found
Perceptions on bioethics among patients presenting to family physicians at a teaching hospital in Karachi
Objective: To study the perceptions on bioethics among patients presenting to family physicians at a teaching hospital in Karachi, Pakistan Study design: Questionnaire based cross sectional survey Settings: The study was carried out at the family practice center, the Aga Khan University Hospital, Karachi Main outcome measures: Perceptions on the broad principles of bioethics Results: Majority of the respondents were young and well educated and better placed socioeconomically. Respondents reported the moral duties of a physician and their reaction in the event of the death of a close relative due to a doctor`s negligence. The majority agreed that a doctor is next to god . Other issues studied include discontinuation of artificial life support, giving of gifts by pharmaceutical companies to doctors, sickness certification, organ donation, human cloning, disclosure of information to cancer patient and patient confidentiality. Conclusion: We have found interesting patient`s perceptions on Bioethics with important implications for clinical practic
CHRONIC KIDNEY DISEASE – A MULTI-CENTER STUDY IN KARACHI, PAKISTAN
Objective: Chronic kidney disease is growing at alarming rate in developing countries like Pakistan. The aim of the study was to find out the major factors leading to this disease and to carry out the comparative analysis of the effectiveness of allopathic and homoeopathic medicines in treatment of chronic kidney disease.Methods: A multi-center study was carried out in five different centers from 2009-2014. The study was carried out by interviewing the patients, noting down their vitals and reviewing their records. Evaluation of the data was done considering age, sex and co-morbidities associated with renal failure.Results: Significant results were observed. Patients of age groups 46 to 60 (48%) and 30 to 45 (21%) were found to suffer more from chronic kidney disease. Hypertension was found as the most frequently occurring co-morbidity along with chronic renal failure followed by diabetes.Conclusion: The current study will be beneficial in bringing awareness in general public and thereby reducing the increasing burden of end-stage kidney disease
Exploring the Anti-Obesity Effects of Prebiotics and Probiotics in Rats; An Experimental Study
Background: Excessive body fat, or obesity, poses a significant global health concern. Research has highlighted the connection between gut microbiota and obesity. This study aimed to investigate whether the administration of prebiotics and probiotics significantly contributes to controlling obesity in a rat model with induced obesity through a high-fat diet (HFD).
Methods: This experimental study involved 50 healthy male Albino Wistar Rats, aged between 10-14 weeks and weighing between 140-180 grams, whereas female rats and rats with any disease were excluded. They were divided into five groups: control (G-I), HFD alone (G-II), Prebiotic + HFD (G-III), Probiotics + HFD (G-IV), and Prebiotic + Probiotics + HFD (G-V). Data were analyzed using SPSS version 22, calculating Mean±S.D. ANOVA and post-hoc tests assessed weight changes between groups, with p-values ≤0.05 considered statistically significant.
Results: Weight changes were observed across all groups on days 0, 35, and 98. The percentages of mean weight change from day 0 to 98 were as follows: G-I, 11.08%; G-II, 47.98%; G-III, 29.88%; G-IV, 29.58%; and G-V, 20.54%. Significant differences (p<0.001) were noted among the groups.
Conclusion: Results in our study indicated that the inclusion of prebiotics and probiotics in the diet of rats following an HFD yields a beneficial outcome in terms of reduction of body weight. This positive effect is attributed to the stimulation and enhancement of the activity of beneficial gut bacteria. The synergistic interaction between prebiotics, probiotics, and the gut microbiota shows promise in mitigating obesity through targeted dietary interventions
Perception of university students about doctors and quality of health care provision at clinics: a multi-national study in India, Pakistan, Spain and United States of America
Background: Patient satisfaction is considered as an indicator of the healthcare quality. Information on patient satisfaction based on medical expertise of the physician, interpersonal skills, physician-patient interaction time, perception and needs of the patient allow policymakers to identify areas for improvement. Primary care services and healthcare structure differ between the countries. The present study was done to determine and analyze the determinants associated with patient satisfaction in India, Pakistan, Spain and USA.Methods: This descriptive study was performed in January to August 2019 among students from Mumbai University, India, Dow University of Health Sciences, Karachi, Pakistan, University CEU Cardenal Herrera, Valencia, Spain, Texas State University, Texas, USA. On the basis of the eligibility criterion (those who gave a written informed consent and were registered students of respective university) 890 (India: 369, Pakistan: 128, Spain: 195, USA: 99) students were selected for the present study.Results: India had almost similar male (49%) to female (51%) ratio of participants. For other 3 countries (PK, ES, US), female participant percentage was nearly 20% or even more as compared to male participants. Overall participant’s satisfaction score about medial expertise of the doctor were highest in India (71%) and were lowest in Spain (43%). Overall satisfaction score about time spent with doctor were highest for India (64%) and were lowest for Spain (41%). Overall satisfaction score about communication with doctor were highest for US (60%) and were lowest for PK (53%). Overall satisfaction score for medical care given by the doctor was lowest in PK (43%) and was highest in US (64%). Overall satisfaction about doctor, highest number of US (83%) and lowest number of PK (32%) participants were satisfied about medical interaction with doctors.Conclusions: These multi-country findings can provide information for health policy making in India, Pakistan, Spain and USA. Although the average satisfaction per country, except Pakistan is more than 60%, the results suggest that there is ample room for improvement
Lead Cap Use in Interventional Cardiology: Time to Protect Our Head in the Cardiac Catheterisation Laboratory?
Background: Radiation exposure is an occupational hazard for interventional cardiologists and cardiac catheterisation laboratory staff that can manifest with serious long-term health consequences. Personal protective equipment, including lead jackets and glasses, is common, but the use of radiation protective lead caps is inconsistent. Methods: A systematic review qualitative assessment of five observational studies using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines protocol was performed. Results: It was concluded that lead caps significantly reduce radiation exposure to the head, even when a ceiling-mounted lead shield was present. Conclusion: Although newer protective systems are being studied and introduced, tools, such as lead caps, need to be strongly considered and employed in the catheterisation laboratory as mainstay personal protective equipment
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Exploring the Anti-Corrosion, Photocatalytic, and Adsorptive Functionalities of Biogenically Synthesized Zinc Oxide Nanoparticles
This study reported the synthesis of ZnO nanoparticles (ZnO NPs) using Cucurbita pepo L. seed extract and explored their multifunctional properties such as anti-corrosion, photocatalytic, and adsorption capabilities. The synthesized ZnO NPs were characterized by Fourier-transform infrared spectroscopy (FTIR) to identify their functional groups, thermogravimetric analysis (TGA) to assess their thermal stability, transmission electron microscopy (TEM), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) to determine their size, morphology, and elemental composition. The characterization of biofabricated ZnO NPs revealed an average particle size of 32.88 nm; however, SEM displayed a tendency for the particles to agglomerate. Furthermore, the X-ray diffraction (XRD) and EDX analysis confirmed the NPs as ZnO, matching patterns reported in the literature. In this study, the potential of the biogenic ZnO NPs was explored for multifunctional applications. Zinc oxide nanoparticles exhibited a higher capacity for adsorbing hydrogen sulfide (H2S) compared to bulk zinc oxide, mostly because of their larger surface area. In addition, electrochemical studies demonstrated a substantial enhancement in the corrosion resistance of mild steel in a 1.0 M HCl solution. ZnO NPs also demonstrated remarkable photodegradation effectiveness, reducing 75% of methyl orange in 60 min under sun-light irradiation. This implies that they could be used to remediate organic pollutants (organic dyes) from wastewater