79 research outputs found

    The type VII secretion system protects Staphylococcus aureus against antimicrobial host fatty acids

    Get PDF
    The Staphylococcus aureus type VII secretion system (T7SS) exports several proteins that are pivotal for bacterial virulence. The mechanisms underlying T7SS-mediated staphylococcal survival during infection nevertheless remain unclear. Here we report that S. aureus lacking T7SS components are more susceptible to host-derived antimicrobial fatty acids. Unsaturated fatty acids such as linoleic acid (LA) elicited an increased inhibition of S. aureus mutants lacking T7SS effectors EsxC, EsxA and EsxB, or the membrane-bound ATPase EssC, compared to the wild-type (WT). T7SS mutants generated in different S. aureus strain backgrounds also displayed an increased sensitivity to LA. Analysis of bacterial membrane lipid profiles revealed that the esxC mutant was less able to incorporate LA into its membrane phospholipids. Although the ability to bind labelled LA did not differ between the WT and mutant strains, LA induced more cell membrane damage in the T7SS mutants compared to the WT. Furthermore, proteomic analyses of WT and mutant cell fractions revealed that, in addition to compromising membranes, T7SS defects induce oxidative stress and hamper their response to LA challenge. Thus, our findings indicate that T7SS contribute to maintaining S. aureus membrane integrity and homeostasis when bacteria encounter antimicrobial fatty acids

    Unbiased metabolomic investigation of Alzheimer's disease brain points to dysregulation of mitochondrial aspartate metabolism

    Get PDF
    Alzheimer's disease (AD) is the most common cause of adult dementia. Yet the complete set of molecular changes accompanying this inexorable, neurodegenerative disease remains elusive. Here we adopted an unbiased lipidomics and metabolomics approach to surveying frozen frontal cortex samples from clinically characterized AD patients (n = 21) and age-matched controls (n = 19), revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, we incorporated the novel molecular information into the known biochemical pathways and compared it with the results of a metabolomics meta-analysis of previously published AD research. We found six metabolic pathways of the central metabolism as well as glycerophospholipid metabolism predominantly altered in AD brains. Using targeted metabolomics approaches and MS imaging, we confirmed a marked dysregulation of mitochondrial aspartate metabolism. The altered metabolic pathways were further integrated with clinical data, showing various degrees of correlation with parameters of dementia and AD pathology. Our study highlights specific, altered biochemical pathways in the brains of individuals with AD compared with those of control subjects, emphasizing dysregulation of mitochondrial aspartate metabolism and supporting future venues of investigation

    Novel regulation from novel interactions: Identification of an RNA sponge that controls the levels, processing and efficacy of the RoxS riboregulator of central metabolism in Bacillus subtilis

    Get PDF
    Small RNAs (sRNAs) are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While potentially of importance, we know the function of few. This is in nosmall part because we lack global-scale methodology enabling target identification, this being especiallyacute in species without known RNA meeting point proteins (e.g. Hfq). We apply a combination ofpsoralen RNA cross-linking and Illumina-sequencing to identify RNA-RNA interacting pairs in vivo inBacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings arerare (compared with sRNA/mRNA), we identify a robust example involving the unusually conservedsRNA (RoxS/RsaE) and an unstudied sRNA that we term Regulator of small RNA A (RosA). Thisinteraction is found in independent samples across multiple conditions. Given the possibility of a novelassociated regulatory mechanism, and the rarity of well-characterised bacterial sRNA-sRNAinteractions, we mechanistically dissect RosA and its interactants. RosA we show to be a sponge RNA,the first to be described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxSand FsrA. Unexpectedly, it acts differently on each. As expected of a sponge RNA, FsrA is sequesteredby RosA. The RosA/RoxS interaction is more complex affecting not only the level of RoxS but also itsprocessing and efficacy. Importantly, RosA provides the condition-dependent intermediary betweenCcpA, the key regulator of carbon metabolism, and RoxS. This not only provides evidence for a novel,and functionally important, regulatory mechanism, but in addition, provides the missing link betweentranscriptional and post-transcriptional regulation of central metabolism

    Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Get PDF
    BACKGROUND:Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function). However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns.RESULTS:In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein).CONCLUSIONS:The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their functio

    The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.

    Get PDF
    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner-Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the 'Warburg effect' of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.We acknowledge funding from the European Commission (Brussels) Role ofMitochondria in Conserved Mechanisms of Aging (MIMAGE) Project (Contract 512020, to M.B.), the Cancer Research Programme Grant (C197/A3514 to K.M.B.), Cancer Research UK and ERC Grants 322842-METABOp53 (supporting E.C.), the Wellcome Trust (RG 093735/Z/10/Z to M.R.), the ERC (Starting grant 260809 to M.R.), the German Research Foundation DFG (PR 1527/1-1 to A.P.), and the Austrian Science Fund (FWF) S9302-B05 (to M.B.). V.O.-S. is supported by Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico postdoctoral fellowship 203450, M.A.K. by the FWF (Austria) by an Erwin Schroedinger postdoctoral fellowship (J 3341). M.R. is a Wellcome-Trust Research career development and Wellcome-Beit prize fellow.This is the final published version. It is also available from Wiley at http://onlinelibrary.wiley.com/doi/10.1111/brv.12140/abstract

    Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan

    Get PDF
    Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan

    Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism

    Get PDF
    Both single and multicellular organisms depend on anti-stress mechanisms that enable them to deal with sudden changes in the environment, including exposure to heat and oxidants. Central to the stress response are dynamic changes in metabolism, such as the transition from the glycolysis to the pentose phosphate pathway—a conserved first-line response to oxidative insults1,2. Here we report a second metabolic adaptation that protects microbial cells in stress situations. The role of the yeast polyamine transporter Tpo1p3,4,5 in maintaining oxidant resistance is unknown6. However, a proteomic time-course experiment suggests a link to lysine metabolism. We reveal a connection between polyamine and lysine metabolism during stress situations, in the form of a promiscuous enzymatic reaction in which the first enzyme of the polyamine pathway, Spe1p, decarboxylates lysine and forms an alternative polyamine, cadaverine. The reaction proceeds in the presence of extracellular lysine, which is taken up by cells to reach concentrations up to one hundred times higher than those required for growth. Such extensive harvest is not observed for the other amino acids, is dependent on the polyamine pathway and triggers a reprogramming of redox metabolism. As a result, NADPH—which would otherwise be required for lysine biosynthesis—is channelled into glutathione metabolism, leading to a large increase in glutathione concentrations, lower levels of reactive oxygen species and increased oxidant tolerance. Our results show that nutrient uptake occurs not only to enable cell growth, but when the nutrient availability is favourable it also enables cells to reconfigure their metabolism to preventatively mount stress protection

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Metabolic modeling of Streptomyces and its relatives : A constraints-based approach

    Get PDF
    Streptomyces species are often referred to as “antibiotic factories” due to their ability to produce a large number of clinically important compounds. They belong to the order Actinomycetales, which is biologically very diverse of showing differences in genome size, pathogenicity, ecological niche, as well as in the ability of some of the species to produce various secondary metabolites. This thesis starts by introducing the genus Streptomyces and its relatives and describing the modeling techniques used for analyzing their metabolic functions. We explored the metabolic system of two antibiotic producing model bacteria, Streptomyces coelicolor and Streptomyces clavuligerus, and computationally investigated their mechanism of antibiotic production. To understand how these antibiotic producing species are phylogenetically related to other species of the group Actinomycetales, we constructed a comprehensive phylogenetic tree, and established a generally usable robust approach to construct fully resolved phylogenetic trees from genome sequences. Results of the phylogenetic study formed the basis for large-scale metabolic modeling, and we identified metabolic as well as topological commonalities and differences among members of the group. Furthermore, by combining phylogenetic information with gene expression data we prioritized “orphan” genes of Streptomyces coelicolor for future experimental study. Finally, the thesis concludes by discussing the future use of our results and models and outlines some perspective for further research into the Systems biology of antibiotic producing microbes. (Chapter 7)
    corecore