46 research outputs found
Target highlights in CASP14 : Analysis of models by structure providers
Abstract The biological and functional significance of selected CASP14 targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modelled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins. This article is protected by copyright. All rights reserved.Peer reviewe
Protein crystallography of triosephosphate isomerases: functional and protein engineering studies
Abstract
The aim of this PhD-study was to better understand the structure-function relationship of triosephosphate isomerase (TIM) and to use this expertise to change its substrate specificity. TIM is an important enzyme of the glycolytic pathway which catalyzes the interconversion of D-glyceraldehyde phosphate (D-GAP) and dihydroxyacetone phosphate (DHAP). Two main subjects are discussed: the engineering of monomeric TIM to create new substrate specificity and the structure-function relationship studies of the catalytically important mobile loop6.
The starting point for the protein engineering project was the monomeric ml8bTIM, with an extended binding pocket between loop7 and loop8. Rational protein engineering efforts have resulted in a new variant called A-TIM that can competently bind wild type transition state analogues. A-TIM was also able to bind citrate, a compound that the wild type TIM does not bind. This A-TIM citrate complex structure is a good starting point for future protein engineering efforts.
Based on the assumption that it would be beneficial for the monomeric forms of TIM to have loop6 closed permanently to increase the population of competent active sites, two point mutation variants, A178L and P168A were generated and characterized. The A178L-mutation was made to favor the closed conformation of loop6 through steric clashes in the open conformation. The P168A variant was made to stabilize the closed conformation of loop6 by removing strain. The A178L mutation induced some features of the closed conformation, but did not result in a closed conformation in the absence of ligands. Our structural studies also show that the P168A mutation does not favor the closed conformation either. However, the structures of the unliganded and liganded P168A variant, together with other known TIM structures show that the substrate binding first induces closure of loop7.
This conformational switch subsequently forces loop6 to adopt its closed conformation.
The protein engineering project was successful, but the efforts to find variants with a permanently closed loop6 did not fully succeed. In the context of this thesis a monomeric variant of TIM, with new binding properties, was created. Nevertheless, A-TIM still competently binds the inhibitors and transition state analogues of wild type TIM. Also, when combined, results discussed in the context of this thesis indicate that in wild type TIM the closure of loop7 after ligand binding is the initial step in the series of conformational changes that lead to the formation of the competent active site.Tiivistelmä
Tämän väitöskirjatyön tarkoituksena oli oppia paremmin ymmärtämään trioosifosfaatti-isomeraasin (TIM) toimintamekanismeja sen rakenteen perusteella ja käyttää tätä tietämystä samaisen proteiinin muokkaamiseen uusiin tarkoituksiin. TIM on keskeinen entsyymi solun energian tuotannossa ja sen toiminta on välttämätöntä kaikille eliöille. Tämän vuoksi on tärkeää oppia ymmärtämään miten se saavuttaa tehokkaan reaktionopeutensa ja miksi se katalysoi vain D-glyseraldehydi-3-fosfaattia (D-GAP) ja dihydroksiasetonifosfaattia (DHAP).
TIM:n toiminta mekanismien ymmärtämiseksi sen aminohapposekvenssiä muokattiin kahdesta kohtaa (P168A ja A178L) ja seuraukset todettiin mittaamalla tuotettujen proteiinien stabiilisuutta optisesti eri lämpötiloissa ja selvittämällä niiden kolmiulotteinen rakenne käyttäen röntgensädekristallografiaa. Mutaatioita tehtiin dimeeriseen villityypin TIM:in (wtTIM) ja jo aikaisemmin muokattuun monomeeriseen TIM:in (ml1TIM). Näiden mutaatioiden tarkoituksena oli suosia entsyymin aktiivista konformaatiota, jossa reaktion kannalta välttämätön vapaasti liikkuva peptidisilmukka numero 6 on suljetussa konformaatiossa. Monomeerisissä TIM:ssa peptidisilmukka numero 6:n ei ole välttämätöntä aueta.
Tulokset mutaatiokokeista olivat osittain lupaavia. P168A-mutaatio lisäsi D-GAP:in sitoutumista, mutta rikkoi tärkeän mekanismin suljetussa, ligandia sitovassa, konformaatiossa. A178L-mutaatio aiheutti muutoksia avoimeen konformaatioon ja teki siitä suljettua konformaatiota muistuttavan jopa ilman ligandia, mutta samalla koko proteiini muuttui epävakaammaksi. Näistä kahdesta mutaatiosta A178L voisi olla hyödyllinen muokattujen TIM-versioiden ominaisuuksien parantamiseksi. Lisäksi yhdessä jo aikaisemmin julkaistujen yksityiskohtien kanssa nämä tulokset tekevät mahdolliseksi esittää tarkennusta siihen miten TIM toimii kun ligandi saapuu sen lähettyville. Tämän väitöskirjatyön yksi tavoite oli myös muokata edelleen monomeeristä TIM versiota (ml8bTIM), joka on suunniteltu siten, että se voi mahdollisesti sitoa uudenlaisia ligandeja. Tämä projekti vaati onnistuakseen 20 eri versiota ml8bTIM:n sekvenssistä ja noin 30 rakennetta. Uusia ligandeja sitova muoto (A-TIM) sitoi onnistuneesti sitraattia ja villityypin TIM:n inhibiittoreita. Erityisen lupaavaa oli, että A-TIM sitoi myös bromohydroksiasetonifosfaattia (BHAP), joka sitoutuu ainoastaan toimivaan aktiiviseen kohtaan. Nämä tulokset osoittavat, että A-TIM kykenee tarvittaessa katalysoimaan isomerisaatio reaktion uudenlaisille molekyyleille. Esimerkiksi katalysoimaan isomerisointireaktiota sokerianalogien tuotannossa
Target highlights in CASP13: experimental target structures through the eyes of their authors
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment
Streamlining heterologous expression of top carbonic anhydrases in Escherichia coli: bioinformatic and experimental approaches
Abstract Background Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. Results In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. Conclusions Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli
Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues
Abstract Background Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. Results In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. Conclusions The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized
Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica.
To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an ability to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. The successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism
Expression of an endoglucanase–cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi
Abstract The low secretion levels of cellobiohydrolase I (CBHI) in yeasts are one of the key barriers preventing yeast from directly degrading and utilizing lignocellulose. To overcome this obstacle, we have explored the approach of genetically linking an easily secreted protein to CBHI, with CBHI being the last to be folded. The Trichoderma reesei eg2 (TrEGII) gene was selected as the leading gene due to its previously demonstrated outstanding secretion in yeast. To comprehensively characterize the effects of this fusion protein, we tested this hypothesis in three industrially relevant yeasts: Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Our initial assays with the L. starkeyi secretome expressing differing TrEGII domains fused to a chimeric Talaromyces emersonii–T. reesei CBHI (TeTrCBHI) showed that the complete TrEGII enzyme, including the glycoside hydrolase (GH) 5 domain is required for increased expression level of the fusion protein when linked to CBHI. We found that this new construct (TrEGII–TeTrCBHI, Fusion 3) had an increased secretion level of at least threefold in L. starkeyi compared to the expression level of the chimeric TeTrCBHI. However, the same improvements were not observed when Fusion 3 construct was expressed in S. cerevisiae and Y. lipolytica. Digestion of pretreated corn stover with the secretomes of Y. lipolytica and L. starkeyi showed that conversion was much better using Y. lipolytica secretomes (50% versus 29%, respectively). In Y. lipolytica, TeTrCBHI performed better than the fusion construct. Furthermore, S. cerevisiae expression of Fusion 3 construct was poor and only minimal activity was observed when acting on the substrate, pNP-cellobiose. No activity was observed for the pNP-lactose substrate. Clearly, this approach is not universally applicable to all yeasts, but works in specific cases. With purified protein and soluble substrates, the exoglucanase activity of the GH7 domain embedded in the Fusion 3 construct in L. starkeyi was significantly higher than that of the GH7 domain in TeTrCBHI expressed alone. It is probable that a higher fraction of fusion construct CBHI is in an active form in Fusion 3 compared to just TeTrCBHI. We conclude that the strategy of leading TeTrCBHI expression with a linked TrEGII module significantly improved the expression of active CBHI in L. starkeyi
MOESM1 of Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues
Additional file 1: Figure S1. HPLC chromatograms of the full range of glucose gluconolactone ratios A) that demonstrate sample neutral/oxidized product ratio using B) linear standard curves for neutral and C1 oxidized monosaccharides for quantification of LPMO products