83 research outputs found

    SOURCE DEPENDENT VARIATION IN HYDROXYL RADICAL PRODUCTION BY AIRBORNE PARTICULATE MATTER AND THE IMPACT ON BEAS-2B AND JB6 CELLS

    Get PDF
    Numerous studies have shown an association between increased levels of particulate matter (PM) and the exacerbation of lung diseases. The exact means by which PM produces these effects remain unclear. Generation of reactive oxygen species such as the hydroxyl radical (OH), is one of the hypothesized mechanisms. However, the importance OH of production by PM remains uncertain due to a lack of sensitive and selective methods for its determination. In this work, a highly-sensitive fluorescence-based technique was employed to quantify the magnitude of .OH generated by a wide range of airborne particulate matter. The generated .OH was measured in the presence and absence of biological electron donor. Little or no production of .OH was observed in the absence of the added electron donor. For some but not all particles, .OH production was increased substantially when a biological electron donor was present. No detectable .OH was produced by kaolinite or silica. The mechanism(s) of .OH generation by airborne particulate matter were investigated. The presence of dioxygen, hydrogen peroxide, superoxide and metal chelators significantly affected .OH production by the particles. The results indicate that metals and organic constituents are involved in .OH production by particles and occur through both homogeneous and heterogeneous reactions. The effect of different airborne particles on .OH generation in the presence of two different cell lines, lung epithelial cells (BEAS-2b) and mouse epidermal cells (JB6) were investigated. In addition, two different toxicological methods were employed to investigate cell viability in the presence of different airborne particles. Based on our results, some .OH production was observed in the presence of these cell lines when exposed to diesel particulate matter and urban dust, but rates of cell death did not correlate with the .OH production rate. Further, silica particles, which exhibited no evidence of .OH production, produced the most rapid cell death. On the other hand, both cell death and hydroxyl radical formation were dramatically enhanced when an external biological reductant, NADPH, was added to a suspension of cells and urban dust. In this situation, the high flux of .OH is the likely factor causing cell death

    River Modelling For Flood Risk Map Prediction: Case Study Of Sungai Kayu Ara

    Get PDF
    Penyelidikan ini memberikan tumpuan terhadap kepentingan kebanjiran sungai di kawasan bandar yang menyebabkan kehilangan nyawa dan kerosakan harta benda. The research illustrates an importance of river flood in urban areas which cause lost of lives and properties damages

    River Modelling For Flood Risk Map Prediction: Case Study Of Sungai Kayu Ara

    Get PDF
    Penyelidikan ini memberikan tumpuan terhadap kepentingan kebanjiran sungai di kawasan bandar yang menyebabkan kehilangan nyawa dan kerosakan harta benda. The research illustrates an importance of river flood in urban areas which cause lost of lives and properties damages

    Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry

    Get PDF
    Isoprene is an important atmospheric volatile organic compound involved in ozone production and NO<sub>x</sub> (NO+NO<sub>2</sub>) sequestration and transport. Isoprene reaction with OH in the presence of NO can form either isoprene hydroxy nitrates ("isoprene nitrates") or convert NO to NO<sub>2</sub> which can photolyze to form ozone. While it has been shown that isoprene nitrate production can represent an important sink for NO<sub>x</sub> in forest impacted environments, there is little experimental knowledge of the relative importance of the individual isoprene nitrate isomers, each of which has a different fate and reactivity. In this work, we have identified the 8 individual isomers and determined their total and individual production yields. The overall yield of isoprene nitrates at atmospheric pressure and 295 K was found to be 0.070(+0.025/−0.015). Three isomers, representing nitrates resulting from OH addition to a terminal carbon, represent 90% of the total IN yield. We also determined the ozone rate constants for three of the isomers, and have calculated their atmospheric lifetimes, which range from ~1–2 h, making their oxidation products likely more important as atmospheric organic nitrates and sinks for nitrogen

    Long-term Impacts of Partial Afforestation on Water and Salt Dynamics of an Intermittent Catchment under Climate Change

    Get PDF
    Soil salinization is a major environmental issue in arid and semi-arid regions, and has been accelerated in some areas by removal of native vegetation cover. Partial afforestation can be a practical mitigation strategy if efficiently integrated with farms and pastures. Using an integrated surface-subsurface hydrological model, this study evaluates the water and salt dynamics and soil salinization conditions of a rural intermittent catchment in the semi-arid climate of southeast Australia subjected to four different partial afforestation configurations under different climate change scenarios, as predicted by several general circulation models. The results show that the locations of afforested areas can induce a retarding effect in the outflow of groundwater salt, with tree planting at lower elevations showing the steadier salt depletion rates. Moreover, except for the configuration with trees planted near the outlet of the catchment, the streamflow is maintained under all other configurations. It appears that under both Representative Concentration Pathways considered (RCP 4.5 and RCP 8.5), the Hadley Centre Global Environmental Model represents the fastest salt export scheme, whereas the Canadian Earth System Model and the Model for Interdisciplinary Research on Climate represent the slowest salt export scheme. Overall, it is found that the location of partial afforestation generally plays a more significant role than the climate change scenarios

    Measurements of ambient HONO concentrations and vertical HONO flux above a northern Michigan forest canopy

    Get PDF
    Systems have been developed and deployed at a North Michigan forested site to measure ambient HONO and vertical HONO flux. The modified HONO measurement technique is based on aqueous scrubbing of HONO using a coil sampler, followed by azo dye derivatization and detection using a long-path absorption photometer (LPAP). A Na<sub>2</sub>CO<sub>3</sub>-coated denuder is used to generate "zero HONO" air for background correction. The lower detection limit of the method, defined by 3 times of the standard deviation of the signal, is 1 pptv for 1-min averages, with an overall uncertainty of ±(1 + 0.05 [HONO]) pptv. The HONO flux measurement technique has been developed based on the relaxed eddy accumulation approach, deploying a 3-D sonic anemometer and two HONO measurement systems. The overall uncertainty is estimated to be within ±(8 × 10<sup>−8</sup> + 0.15 <i>F</i><sub>HONO</sub>) mol m<sup>−2</sup> h<sup>−1</sup>, with a 20-min averaged data point per 30 min. Ambient HONO and vertical HONO flux were measured simultaneously at the PROPHET site from 17 July to 7 August 2008. The forest canopy was found to be a net HONO source, with a mean upward flux of 0.37 × 10<sup>−6</sup> moles m<sup>−2</sup> h<sup>−1</sup>. The HONO flux reached a maximal mean of ~0.7 × 10<sup>−6</sup> moles m<sup>−2</sup> h<sup>−1</sup> around solar noon, contributing a major fraction to the HONO source strength required to sustain the observed ambient concentration of ~70 pptv. There were no significant correlations between [NO<sub>x</sub>] and daytime HONO flux and between <i>J</i><sub>NO<sub>2</sub></sub> × [NO<sub>2</sub>] and HONO flux, suggesting that NO<sub>x</sub> was not an important precursor responsible for HONO daytime production on the forest canopy surface in this low-NO<sub>x</sub> rural environment. Evidence supports the hypothesis that photolysis of HNO<sub>3</sub> deposited on the forest canopy surface is a major daytime HONO source

    Sub-annual variability in historical water source use by Mediterranean riparian trees

    Get PDF
    This work was supported financially by a NERC PhD Studentship to CIS, Observatoire Hommes/Milieux Vallée du Rhône and the Department of Earth and Environmental Sciences at the University of St. AndrewsThe seasonal availability of water within a tree’s rooting zone may be an important determinant for individual tree growth and overall forest health, particularly in riparian corridors of Mediterranean climate zones that are vulnerable to water stress. Here, we present a new method that combines dendro-isotopes and isotope modelling for determining how water source use varies over 10 consecutive growing seasons (2000-2010) for co-occurring species Populus nigra and Fraxinus excelsior, along the Rhône River, south-eastern France. We conducted highly resolved δ18O analysis of cellulose micro-slices within tree rings and back-calculated the δ18O signature of source water available at the time of growth using a biochemical fractionation model. We related these patterns to inferred seasonal hydrologicalpartitioning through comparison with δ18O of waters from the vadose and phreatic zones, precipitation, and streamflow. The shallowly rooted Fraxinus displayed greater sub-annual source water variability, as well as greater isotopic enrichment, reflecting use of precipitation-derived vadose moisture. Its earlywood was formed mainly from winter rainfall(δ18O depleted) whilst the latewood was composed from growing season precipitation (δ18O enriched). In Populus, the sub-annual source water use was relatively depleted, suggesting use of hyporheic water and regional groundwater. From 2007, both species converged in their pattern of water source uptake which was attributed to a decline in phreatic water access for Populus. These results demonstrate that the seasonal variability in source water use can be identified retrospectively, a method which may prove important for anticipating the future consequences of climate-driven changes to the hydrological cycle.Publisher PDFPeer reviewe

    Environmentally Persistent Free Radicals (EPFRs). 3. Free versus Bound Hydroxyl Radicals in EPFR Aqueous Solutions

    Get PDF
    Additional experimental evidence is presented for in vitro generation of hydroxyl radicals because of redox cycling of environmentally persistent free radicals (EPFRs) produced after adsorption of 2-monochlorophenol at 230 °C (2-MCP-230) on copper oxide supported by silica, 5% Cu(II)O/silica (3.9% Cu). A chemical spin trapping agent, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed. Experiments in spiked O17 water have shown that ∼15% of hydroxyl radicals formed as a result of redox cycling. This amount of hydroxyl radicals arises from an exogenous Fenton reaction and may stay either partially trapped on the surface of particulate matter (physisorbed or chemisorbed) or transferred into solution as free OH. Computational work confirms the highly stable nature of the DMPO–OH adduct, as an intermediate produced by interaction of DMPO with physisorbed/chemisorbed OH (at the interface of solid catalyst/solution). All reaction pathways have been supported by ab initio calculations

    Prevalence and Correlates of Psychiatric Disorders in a National Survey of Iranian Children and Adolescents

    Get PDF
    Objective: Considering the impact of rapid sociocultural, political, and economical changes on societies and families, population-based surveys of mental disorders in different communities are needed to describe the magnitude of mental health problems and their disabling effects at the individual, familial, and societal levels. Method: A population-based cross sectional survey (IRCAP project) of 30 532 children and adolescents between 6 and 18 years was conducted in all provinces of Iran using a multistage cluster sampling method. Data were collected by 250 clinical psychologists trained to use the validated Persian version of the semi-structured diagnostic interview Kiddie-Schedule for Affective Disorders and Schizophrenia-PL (K-SADS-PL). Results: In this national epidemiological survey, 6209 out of 30 532 (22.31%) were diagnosed with at least one psychiatric disorder. The anxiety disorders (14.13%) and behavioral disorders (8.3%) had the highest prevalence, while eating disorders (0.13%) and psychotic symptoms (0.26%) had the lowest. The prevalence of psychiatric disorders was significantly lower in girls (OR = 0.85; 95% CI: 0.80-0.90), in those living in the rural area (OR = 0.80; 95% CI: 0.73-0.87), in those aged 15-18 years (OR = 0.92; 95% CI: 0.86-0.99), as well as that was significantly higher in those who had a parent suffering from mental disorders (OR = 1.96; 95% CI: 1.63-2.36 for mother and OR = 1.33; 95% CI: 1.07-1.66 for father) or physical illness (OR = 1.26; 95% CI: 1.17-1.35 for mother and OR = 1.19; 95% CI: 1.10-1.28 for father). Conclusion: About one fifth of Iranian children and adolescents suffer from at least one psychiatric disorder. Therefore, we should give a greater priority to promoting mental health and public health, provide more accessible services and trainings, and reduce barriers to accessing existing services
    corecore