9 research outputs found

    Four bioactive compounds isolated from the stem of Anethum sowa L. and their bioactivities

    Get PDF
    Anethum sowa L., (a well-known herb in folk medicine, has a greater medicinal significance due to its diversified activities such as antioxidant, antimicrobial and antispasmodic activity. Very few bioactive compounds have been reported from this species. Our study focused on the isolation, structure elucidation and bioactivity assay of the compounds. In the present work, 6-hydroxy-1, 3-dimethoxy-7-methyl-xanthen-9-one (AS-1) from dichloromethane extract and scopoletin (AS-2), 1, 3, 4-trimethoxy-xanthen-9-one (AS-3), graveolone (AS-4) from ethyl acetate extract of stem of A. sowa were isolated from the stem as well as the plant for the first time. All the characterizations and chemical structures of the compounds were determined by extensive modern spectroscopic techniques such as ultraviolet (UV), infrared (IR), mass, Nuclear Magnetic Resonance (NMR) spectrophotometer. Moreover, the cytotoxic, antimicrobial and antioxidant activity of AS-2, AS-3 and AS-4 were assessed. AS-2 exhibited significant activity against Salmonella typhi while mild antifungal activity against Aspergillus niger. Furthermore AS-3 revealed significant antifungal activity against Sacharomyces cerevacae as well as antibacterial activity against Salmonella typhi. Besides AS-4 exhibited moderate antibacterial activity against Bacillus megaterium. In addition AS-2, AS-3 and AS-4 presented mild cytotoxic with respect to positive control (Vincristine sulphate) while AS-3 exhibited moderate antioxidant activity as compared to positive control (Ascorbic acid)

    Two rare flavonoid glycosides from Litsea glutinosa (Lour.) C. B. Rob.: experimental and computational approaches endorse antidiabetic potentiality

    No full text
    Abstract Background Litsea glutinosa (Lour.) C. B. Rob. belongs to the Litsea genus and is categorized under the family of Lauraceae. The study aimed to investigate the phytoconstituents and pharmacological properties of methanol extract of leaves of Litsea glutinosa, focusing on antidiabetic activity via in vivo and in silico techniques. Methods Extensive chromatographic and spectroscopic techniques were applied to isolate and characterize the constituents from the L. glutinosa plant species. The antidiabetic activity was studied in streptozotocin-induced diabetes mice, and the computational study of the isolated compounds was carried out by utilizing AutoDock Vina programs. In addition, the pharmacokinetic properties in terms of absorption, distribution, metabolism and excretion (ADME) and toxicological profiles of the isolated compounds were examined via in silico techniques. Results In the present study, two flavonoid glycosides 4΄-O-methyl (2 ̋,4 ̋-di-E-p-coumaroyl) afzelin (1) and quercetin 3-O-(2 ̋,4 ̋-di-E-p-coumaroyl)-α-L-rhamnopyranoside (2) were isolated from the leaves of L. glutinosa and characterized by 1H and 13C NMR, COSY, HSQC, HMBC, and mass spectral data. Although compounds 1 and 2 have been reported twice from Machilis litseifolia and Lindera akoensis, and Machilis litseifolia and Mammea longifolia, respectively, this is the first report of this isolation from a Litsea species. Administering the methanolic extract of L. glutinosa at doses of 300 and 500 mg/kg/day to mice with diabetes induced by streptozotocin led to a significant decrease in fasting blood glucose levels (p < 0.05) starting from the 7th day of treatment. Besides, the computational study and PASS analysis endorsed the current in vivo findings that the both isolated compounds exerted higher binding affinities to human pancreatic α-amylase and aldose reductase than the conventional drugs. The in silico ADMET analysis revealed that the both isolated compounds have a favorable pharmacokinetic and safety profile suitable for human consumption. Conclusion According to the current outcomes obtained from in vivo and in silico techniques, the leaf extract of L. glutinosa could be a natural remedy for treating diabetes, and the isolated phytoconstituents could be applied against various illnesses, mainly hyperglycemia. However, more investigations are required for extensive phytochemical isolation and pharmacological activities of these phytoconstituents against broader targets with exact mechanisms of action

    Phenolic Constituents from Wendlandia tinctoria var. grandis (Roxb.) DC. Stem Deciphering Pharmacological Potentials against Oxidation, Hyperglycemia, and Diarrhea: Phyto-Pharmacological and Computational Approaches

    No full text
    Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 &plusmn; 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 &plusmn; 0.07 &micro;g/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 &plusmn; 0.10 to 16.11 &plusmn; 0.02 &mu;g/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 &plusmn; 0.01 &mu;g/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract&rsquo;s antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets

    Isolation of bioactive phytochemicals from Crinum asiaticum L. along with their cytotoxic and TRAIL-resistance abrogating prospect assessment

    No full text
    Crinum asiaticum L. (Amaryllidaceae) is a perennial bulbous herb, locally utilized for possessing multifaceted pharmacological properties including anticancer, immune-stimulating, analgesic, antiviral, antimalarial, antibacterial and antifungal, in addition to its popularity as an aesthetic plant. Separation of MeOH extract of C. asiaticum leaves yielded three known compounds as cycloneolitsol (1), hippeastrine (2) and β-sitosterol (3). Among these, compounds 1 and 2 were subjected to the cytotoxic assay and found that they induced mild effect against HCT116, Huh7 and DU145 cell lines with the IC50 values from 73.76 to 132.53 μM. When tested for TRAIL-resistance abrogating activity, 1 (100 μM) along with TRAIL (100 ng/mL) showed moderate activity in AGS cells producing 25 % more inhibition than the agent alone. Whereas 2 (20 and 30 μM) in combination with TRAIL (100 ng/mL) exhibited strong activity in abrogating TRAIL-resistance and caused 34 % and 36 % more inhibition in AGS cells, respectively. The in-silico studies of compound 2 revealed high docking hits with the TRAIL-associated anti-apoptotic proteins which give a justification for the regulatory interactions to induce such abrogating activity. It is still recommended to conduct further investigations to understand their exact molecular mechanism

    Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy

    No full text
    corecore