1,835 research outputs found

    Structural Assembly Demonstration Experiment (SADE)

    Get PDF
    The purpose of the Structural Assembly Demonstration Experiment (SADE) was to create a near-term Shuttle flight experiment focusing on the deployment and erection of structural truss elements. The activities of the MIT Space Systems Laboratory consist of three major areas: preparing and conducting neutral buoyancy simulation test series; producing a formal SADE Experiment plan; and studying the structural dynamics issues of the truss structure. Each of these areas is summarized

    Assessment of Fitts' Law for Quantifying Combined Rotational and Translational Movements

    Get PDF
    Objective: To develop a model for human performance in combined translational and rotational movements based on Fitts' law. Background: Fitts' law has been successfully applied to translational movements in the past, providing generalization beyond a specific task as well as performance predictions. For movements involving both translations and rotations, no equivalent theory exists, making comparisons of input devices for these movements more ambiguous. Method: The study consisted of three experiments. In the first two, participants performed either pure translational or pure rotational movements of 1 degree of freedom. The third experiment involved the same movements combined. Results: On average, the performance times for combined movements were equal to the sum of the times for equivalent separate rotational and translational movements. A simple Fitts' law equivalent for combined movements with a similar slope as the separate components was proposed. In addition, a significant degree of coordination of the combined movements was found. This had a strong bias toward a parallel execution in 12 out of 13 participants. Conclusion: Combined movements with rotations and translations of 1 degree of freedom can be approximated using a simple Fitts' law equivalent. The rotational and translational components appear to be coordinated by the central nervous system to generate a parallel execution. Application: The results may help drive human interface designs and provide insights into the coordination of combined movements. Future extensions may be possible for the movements of higher degrees of freedom used in robot teleoperation and virtual reality applications.This work was supported by the Institute for Dexterous Space Robotics (Grant No. NNX06AD23G).Publicad

    Development of an interchangeable end effector mechanism for the Ranger telerobotic vehicle

    Get PDF
    The Ranger program at the Space Systems Laboratory (SSL) at the University of Maryland is a demonstration of an extremely low cost, space flight experiment. The Ranger vehicle is designed to perform teleoperated spacecraft maintenance. Completing the various tasks included in spacecraft maintenance requires several specific tools. This paper describes the Ranger interchangeable end effector mechanism (IEEM). Its design allows Ranger to change end effectors to utilize the appropriate tool for the various tasks. The Ranger vehicle is designed with four manipulators. A seven degree-of-freedom (DOF) grappling manipulator securely attaches the vehicle to the work site. A 6 DOF camera positioning manipulator allows the operator to position a stereo pair of video cameras for visual feedback. The two remaining manipulators are the 7 DOF dexterous arms. They are the primary means by which Ranger accomplishes its required tasks. At the end of each of these dexterous manipulators is an IEEM. This paper begins with a brief overview of the Space Systems Laboratory and the Ranger program. The constraints leading to the requirements for an IEEM are described. The following section then describes the design strategies and the down selection process resulting in two candidate designs, taper and pneumatic connector type. Next, the leading candidate design is described in detail, followed by a preliminary discussion of failure modes and planned testing. The paper concludes with a brief review and a section discussing future work

    Structural assembly demonstration experiment, phase 1

    Get PDF
    The goal of this phase of the structural assembly and demonstration experiment (SADE) program was to begin to define a shuttle flight experiment that would yield data to compare on-orbit assembly operations of large space structures with neutral buoyancy simulations. In addition, the experiment would be an early demonstration of structural hardware and human capabilities in extravehicular activity (EVA). The objectives of the MIT study, as listed in the statement of work, were: to provide support in establishing a baseline neutral buoyancy testing data base, to develop a correlation technique between neutral buoyancy test results and on-orbit operations, and to prepare the SADE experiment plan (MSFC-PLAN-913)

    A systems analysis of space industrialization

    Get PDF
    Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1981.Microfiche copy available in Archives and Barker.Includes bibliographical references.by David L. Akin.Sc.D

    BioBot: Innovative Offloading of Astronauts for More Effective Exploration

    Get PDF
    The BioBot concept consists of a robotic rover which is capable of traversing the same terrain as a spacesuited human. It carries the primary life support system for the astronaut, including consumables, atmosphere revitalization systems (e.g., CO2 scrubbing, humidity and temperature management, ventilation fan), power system (e.g., battery, power management and distribution),and thermal control system (e.g., water sublimator, cooling water pump), along with umbilical lines to connect to the supported astronaut. Although not technically part of life support, it would be logical for the BioBot to also provide long-range communications, video monitoring, tool and sample transport, and other functions to enable and enhance EVA productivity in planetary surface exploration.The design reference scenario for this concept is that astronauts involved in future lunar or Mars exploration will be on the surface for weeks or months rather than days, and will be involved in regular EVA operations. It is not unreasonable to think of geologists spending several days inEVA exploration each week over a prolonged mission duration, with far more ambitious operational objectives than were typical of Apollo. In this scenario, each astronaut will be accompanied by a "BioBot", which will transport their life support system and consumables, an extended umbilical and umbilical reel, and robotic systems capable of controlling the position and motion of the umbilical. The astronaut will be connected to the robot via the umbilical, carrying only a small emergency open-loop life support system similar to those contained in every PLSS. The robotic mobility base will be designed to be capable of traveling anywhere the astronaut can walk, and will also be useful as a transport for the EVA tools, science instrumentation, and collected samples. In addition, the BioBot can potentially carry the astronaut on traverses as well. Such a system will also be a significant enhancement to public engagement in these future exploration missions, as the robotic vehicles can also support high-resolution cameras and high bandwidth communications gear to providehigh-definition video coverage of each crew throughout each EVA sortie

    Rapid flipping of parametric phase states

    Full text link
    Since the invention of the solid-state transistor, the overwhelming majority of computers followed the von Neumann architecture that strictly separates logic operations and memory. Today, there is a revived interest in alternative computation models accompanied by the necessity to develop corresponding hardware architectures. The Ising machine, for example, is a variant of the celebrated Hopfield network based on the Ising model. It can be realized with artifcial spins such as the `parametron' that arises in driven nonlinear resonators. The parametron encodes binary information in the phase state of its oscillation. It enables, in principle, logic operations without energy transfer and the corresponding speed limitations. In this work, we experimentally demonstrate flipping of parametron phase states on a timescale of an oscillation period, much faster than the ringdown time \tau that is often (erroneously) deemed a fundamental limit for resonator operations. Our work establishes a new paradigm for resonator-based logic architectures.Comment: 6 pages, 3 figure

    Knee pain and related health in the community study (KPIC): a cohort study protocol

    Get PDF
    Background: The incidence, progression and related risk factors for recent-onset knee pain (KP) remain uncertain. This study aims to examine the natural history of KP including incidence and progression and to identify possible phenotypes and their associated risk factors. Methods: A prospective community-based cohort of men and women aged 40 years or over within the East Midlands region (UK) will be recruited via a postal questionnaire from their general practices. The questionnaire will enquire about: presence and onset of KP; pain severity (0–10 numerical rating scale (NRS)); pain catastrophizing and neuropathic-like pain (NP) using the painDETECT questionnaires (definite NP scores ≥19–38); risk factors for KP and/or osteoarthritis (OA) (age, body mass index, constitutional knee alignment, nodal OA, index: ring finger length (2D4D) ratio); quality of life (SF12); and mental health (Hospital Anxiety and Depression Scale). Clinical assessments will be undertaken in a sample of 400 participants comprising three groups: early KP (≤3 year’s duration), established KP (>3 years) and no KP. Assessments will include knee radiographs (standing semi-flexed and 300 skyline views); knee ultrasound (synovial effusion, hypertrophy, and Doppler activity); quantitative sensory testing; muscle strength (quadriceps, hip abductor, and hand-grip); balance; gait analysis (GAITrite); and biomarker sampling. A repeat questionnaire will be sent to responders at years 1 and 3. The baseline early KP group will undergo repeat assessments at year 1 (apart from radiographs) and year 3 (with radiographs). Any incident KP individuals identified at year 1 or 3 questionnaires will have clinical and radiographic assessments at the respective time points. Discussion: Baseline data will be used to examine risk factors for early onset KP and to identify KP phenotypes. Subsequent prospective data, at least to Year 3, will allow examination of the natural history of KP and risk factors for incidence and progression. Trial registration: The study was registered on the clinicaltrials.gov portal: NCT02098070) on the 14th of March 2014

    Science and the Liberal Arts at Ursinus College

    Get PDF
    Science trend: Moving beyond industrialism • Founders\u27 Day address: Small colleges nurture young scientists well • Physics mentor changed a life • Complex world a challenge for scientists • In government, chemist finds his niche • Ursinus helps non standard student bloom • Ursinus let him explore inner space • Finding the problem is scientist\u27s hardest task • Most wanted: Insatiable curiosity • Real research: Practical or esoteric? • Flexibility is a matter of degree • Liberal arts education prepares minds • The way to encourage young scientistshttps://digitalcommons.ursinus.edu/founders_programs/1053/thumbnail.jp

    Nivolumab Monotherapy and Nivolumab Plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results From the CheckMate 032 Randomized Cohort

    Get PDF
    Abstract Introduction Nivolumab monotherapy is approved in the United States for third-line or later metastatic small cell lung cancer based on pooled data from nonrandomized and randomized cohorts of the multicenter, open-label, phase 1/2 trial of nivolumab ± ipilimumab (CheckMate 032; NCT01928394). We report updated results, including long-term overall survival (OS), from the randomized cohort. Methods Patients with small cell lung cancer and disease progression after one to two prior chemotherapy regimens were randomized 3:2 to nivolumab 3 mg/kg every 2 weeks or nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks for four cycles followed by nivolumab 3 mg/kg every 2 weeks. Patients were stratified by number of prior chemotherapy regimens and treated until disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR) by blinded independent central review. Results Overall, 147 patients received nivolumab and 96 nivolumab plus ipilimumab. Minimum follow-up for ORR/progression-free survival/safety was 11.9 months (nivolumab) and 11.2 months (nivolumab plus ipilimumab). ORR increased with nivolumab plus ipilimumab (21.9% versus 11.6% with nivolumab; odds ratio: 2.12; 95% confidence interval: 1.06–4.26; p = 0.03). For long-term OS, minimum follow-up was 29.0 months (nivolumab) versus 28.4 months (nivolumab plus ipilimumab); median (95% confidence interval) OS was 5.7 (3.8–7.6) versus 4.7 months (3.1–8.3). Twenty-four–month OS rates were 17.9% (nivolumab) and 16.9% (nivolumab plus ipilimumab). Grade 3 to 4 treatment-related adverse event rates were 12.9% (nivolumab) versus 37.5% (nivolumab plus ipilimumab), and treatment-related deaths were n =1 versus n = 3, respectively. Conclusions Whereas ORR (primary endpoint) was higher with nivolumab plus ipilimumab versus nivolumab, OS was similar between groups. In each group, OS remained encouraging with long-term follow-up. Toxicities were more common with combination therapy versus nivolumab monotherapy
    • …
    corecore