research

Rapid flipping of parametric phase states

Abstract

Since the invention of the solid-state transistor, the overwhelming majority of computers followed the von Neumann architecture that strictly separates logic operations and memory. Today, there is a revived interest in alternative computation models accompanied by the necessity to develop corresponding hardware architectures. The Ising machine, for example, is a variant of the celebrated Hopfield network based on the Ising model. It can be realized with artifcial spins such as the `parametron' that arises in driven nonlinear resonators. The parametron encodes binary information in the phase state of its oscillation. It enables, in principle, logic operations without energy transfer and the corresponding speed limitations. In this work, we experimentally demonstrate flipping of parametron phase states on a timescale of an oscillation period, much faster than the ringdown time \tau that is often (erroneously) deemed a fundamental limit for resonator operations. Our work establishes a new paradigm for resonator-based logic architectures.Comment: 6 pages, 3 figure

    Similar works