15 research outputs found

    Individual identification and genetic variation of lions (Panthera leo) from two protected areas in Nigeria.

    Get PDF
    This survey was conducted in two protected areas in Nigeria to genetically identify individual lions and to determine the genetic variation within and between the populations. We used faecal sample DNA, a non-invasive alternative to the risky and laborious task of taking samples directly from the animals, often preceded by catching and immobilization. Data collection in Yankari Game Reserve (YGR) spanned through a period of five years (2008 -2012), whereas data in Kainji Lake National Park (KLNP) was gathered for a period of three years (2009, 2010 and 2012). We identified a minimum of eight individuals (2 males, 3 females, 3 unknown) from YGR and a minimum of ten individuals (7 males, 3 females) from KLNP. The two populations were found to be genetically distinct as shown by the relatively high fixation index (FST  = 0.17) with each population exhibiting signs of inbreeding (YGR FIS  = 0.49, KLNP FIS  = 0.38). The genetic differentiation between the Yankari and Kainji lions is assumed to result from large spatial geographic distance and physical barriers reducing gene flow between these two remaining wild lion populations in Nigeria. To mitigate the probable inbreeding depression in the lion populations within Nigeria it might be important to transfer lions between parks or reserves or to reintroduce lions from the zoos back to the wild

    Whole-genome resequencing of temporally stratified samples reveals substantial loss of haplotype diversity in the highly inbred Scandinavian wolf population

    No full text
    Genetic drift can dramatically change allele frequencies in small populations and lead to reduced levels of genetic diversity, including loss of segregating variants. However, there is a shortage of quantitative studies of how genetic diversity changes over time in natural populations, especially on genome-wide scales. Here, we analyzed whole-genome sequences from 76 wolves of a highly inbred Scandinavian population, founded by only one female and two males, sampled over a period of 30 yr. We obtained chromosome-level haplotypes of all three founders and found that 10%-24% of their diploid genomes had become lost after about 20 yr of inbreeding (which approximately corresponds to five generations). Lost haplotypes spanned large genomic regions, as expected from the amount of recombination during this limited time period. Altogether, 160,000 SNP alleles became lost from the population, which may include adaptive variants as well as wild-type alleles masking recessively deleterious alleles. Although not sampled, we could indirectly infer that the two male founders had megabase-sized runs of homozygosity and that all three founders showed significant haplotype sharing, meaning that there were on average only 4.2 unique haplotypes in the six copies of each autosome that the founders brought into the population. This violates the assumption of unrelated founder haplotypes often made in conservation and management of endangered species. Our study provides a novel view of how whole-genome resequencing of temporally stratified samples can be used to visualize and directly quantify the consequences of genetic drift in a small inbred population

    Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host

    Get PDF
    It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta C-13, delta N-15, delta D and delta S-34) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta C-13 and delta N-15 but lower delta D and delta S-34 values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites

    Spermatogonia Loss Correlates with LAMA 1 Expression in Human Prepubertal Testes Stored for Fertility Preservation

    Get PDF
    Fertility preservation for male childhood cancer survivors not yet capable of producing mature spermatozoa, relies on experimental approaches such as testicular explant culture. Although the first steps in somatic maturation can be observed in human testicular explant cultures, germ cell depletion is a common obstacle. Hence, understanding the spermatogonial stem cell (SSC) niche environment and in particular, specific components such as the seminiferous basement membrane (BM) will allow progression of testicular explant cultures. Here, we revealed that the seminiferous BM is established from 6 weeks post conception with the expression of laminin alpha 1 (LAMA 1) and type IV collagen, which persist as key components throughout development. With prepubertal testicular explant culture we found that seminiferous LAMA 1 expression is disrupted and depleted with culture time correlating with germ cell loss. These findings highlight the importance of LAMA 1 for the human SSC niche and its sensitivity to culture conditions.Peer reviewe

    Assisting the implementation of screening for type 1 diabetes by using artificial intelligence on publicly available data

    No full text
    The type 1 diabetes community is coalescing around the benefits and advantages of early screening for disease risk. To be accepted by healthcare providers, regulatory authorities and payers, screening programmes need to show that the testing variables allow accurate risk prediction and that individualised risk-informed monitoring plans are established, as well as operational feasibility, cost-effectiveness and acceptance at population level. Artificial intelligence (AI) has the potential to contribute to solving these issues, starting with the identification and stratification of at-risk individuals. ASSET (AI for Sustainable Prevention of Autoimmunity in the Society; www.asset.healthcare) is a public/private consortium that was established to contribute to research around screening for type 1 diabetes and particularly to how AI can drive the implementation of a precision medicine approach to disease prevention. ASSET will additionally focus on issues pertaining to operational implementation of screening. The authors of this article, researchers and clinicians active in the field of type 1 diabetes, met in an open forum to independently debate key issues around screening for type 1 diabetes and to advise ASSET. The potential use of AI in the analysis of longitudinal data from observational cohort studies to inform the design of improved, more individualised screening programmes was also discussed. A key issue was whether AI would allow the research community and industry to capitalise on large publicly available data repositories to design screening programmes that allow the early detection of individuals at high risk and enable clinical evaluation of preventive therapies. Overall, AI has the potential to revolutionise type 1 diabetes screening, in particular to help identify individuals who are at increased risk of disease and aid in the design of appropriate follow-up plans. We hope that this initiative will stimulate further research on this very timely topic

    MAGNETIC RESONANCE IMAGING FOR NONINVASIVE ANALYSIS OF FAT STORAGE IN MIGRATORY BIRDS

    No full text
    Many bird species migrate long distances without any food intake and must optimize storage of energy with respect to minimization of aerodynamic drag. To contribute to the understanding of this issue, we investigated, by magnetic resonance imaging (MRI), spatial distributions of body fat during the accumulation process before migration. We collected data from 12 Lesser Whitethroats (Sylvia curruca), 9 European Robins (Erithacus rubecula), 8 Blackcaps (Sylvia atricapilla), and 5 Willow Warblers (Phylloscopus trochilus). On average, each bird was examined 3.2 times. Adipose tissue was Visualized using T1-weighted spin-echo MRI at 1.5 T. Fat-containing pixels were identified by an image-segmentation procedure. Data were analyzed with respect to (1) fat distribution within the body, (2) relationship between frontal surface area and fat mass increase, (3) fat mass increase in comparison with increase in total body mass, and (4) fat mass in relation to standardized visual classification of fat deposits. Fat increase was reflected by a larger frontal area, though adipose tissue was not deposited equally along the length of the bird. Slices with largest frontal area showed relatively low fractions of fat. Frontal area increased less than expected from conventional geometrical models, which indicates that the body shape is altered. The increase in total body mass was generally higher than the total fat mass increase, which indicates that other tissue, most likely flight muscle, can metabolize rapidly in correlation with fat accumulation. In Blackcap, total fat mass was not linearly related to standardized fat-deposit classes. Received 31 August 2007, accepted 7 June 2008
    corecore