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ABSTRACT  

In this work, tensile, flexural and the low-velocity impact response of regenerated 

biodegradable warp-knitted and non-woven viscose fabric reinforced unsaturated 

polyester (UP) sandwich biocomposites are reported. Four different types of sandwich 

laminates comprised of different configurations as well as various weight fractions of 

warp knitted/non-woven fabrics were manufactured by vacuum infusion moulding (VI). 

The influence of warp knitted/non-woven ratios in the sandwich surface layers and core 

layer and lay-up configurations on the tensile, flexural and low velocity impact damage 

characteristics have been investigated. It was observed from the experimental results 

that fibre lay-up configurations have a considerable effect on the mechanical properties 

of regenerated cellulose reinforced sandwich biocomposites. The tensile strength was 

increased from 50 MPa for sandwich laminate SL1 (22 wt-% of reinforcement) to 160 

MPa for sandwich laminate SL4 (39.8 wt-% of reinforcement). Similar trend was 

observed for impact behaviour, showing the best penetration resistance by SL4 

laminate. 
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1. Introduction 

In recent years, there is an increased interest in the use of sustainable biocomposites 

due to the environmental burden created with the use of non-renewable carbon or glass 

fibre composites [1,2]. Extensive research works have been conducted in the past 

focusing on the development and testing of composites using natural fibres and 

thermoset and thermoplastic polymer matrices [3-6]. These natural fibre reinforced 

composites are becoming more popular due to their environmentally friendly, 

acceptable specific properties, and biodegradable attributes. Natural fibres have shown 

their potential, and can be good replacements for glass fibres in composite applications 

as these are natural, renewable and abundant [7-9].  

In the automotive sector, natural fibre composites are particularly interesting due to 

their much lower specific weight compared to glass fibres. This is enhanced by the  

European Directive (2000/53/EC) on the disposal of vehicles states that by 1st January 

2015 vehicles should be by weight at least 85% reusable, 10% by weight recyclable, 

and only 5% may go to landfill [10]. Natural fibre composites are most commonly used 

in interior applications (inside door panels, dashboard and trim) but there is also a need 

to develop stronger biocomposites for exterior panels where impact strength is 

especially required [11,12].  

Despite their many attractive attributes such as high specific strength and modulus, 

biodegradability compared to conventional fibre reinforced composites, natural fibre 

composites are susceptible to internal damages caused by low-velocity impact (LVI) 

loading. LVI damage for example analogous to several real life situations, such as 

damage during manufacture, feasibly due to human error such as dropping tools and 

mishandling of the finished products and a vessel collision with another. As a result of 

such damages, the structural integrity of composites significantly reduces. For example, 

the work carried out by Sy et al. [13] on unidirectional and cross-ply flax/epoxy 

laminates subjected to LVI loading suggested that the unidirectional laminate exhibited 

poor and brittle failure behaviour compared to cross-ply laminates.  Similarly, the 

ageing behaviour of jute and interplay jute/basalt hybrid laminates exposed to salt-fog 

and evaluated under quasi-static three-point bending and LVI testing. Their results 

highlighted that the salt-fog exposure influenced the microstructural integrity of the 

laminates causing severe damage to fibre matrix interfaces for both jute and jute/basalt 

hybrid systems [14]. Therefore, amongst other properties, understanding of LVI 
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damage mechanisms is important for these composites to be used in various engineering 

applications [15,16].  

Viscose or rayon, is a man-made fibre prepared by regeneration of dissolved cellulose, 

which has been used since late 19th century as a textile yarn. In technical applications 

for example, at present, viscose yarns are used as tire cord to reinforce car tires. 

Compared to plant origin natural fibres such as hemp, jute and flax, viscose fibres are 

produced in an industrial process to continuous filaments, and they can be easily 

converted to similar reinforcement fabrics as glass fibres, but with much lower weight. 

Their high tenacity and low density can provide high specific strength and good impact 

resistance [17,18]. Due to the ductile characteristics of viscose, it is also expected that 

these fibres could be used in composites where toughness properties cannot be 

compromised. 

The possibility of using viscose as a reinforcement in both thermoplastic and thermoset 

composites have been reported by several researchers. In thermoplastic composites, the 

use of viscose as a reinforcement has been reported for high-density polyethylene [19], 

polypropylene [20-23], polylactic acid [24,25], polyhydroxybuturate [26] and 

polyamide-6 [26]. In these studies, both short and long viscose fibres have been used. 

These researchers have pointed out that the fibre-matrix compatibility has been 

improved by surface treatments, which is normally needed when combining a polar 

fibre like viscose with a non-polar polymer. The favourable composite impact 

properties have particularly been reported in these studies [20, 24, 26, 27]. Thermoset 

composites reinforced with viscose have been produced by hand lay-up method using 

needle punched non-woven viscose fabrics and epoxy resins [28] and from carded non-

woven viscose fabrics and soy bean oil [29]. Besides several advantages, the thermoset 

composites for example, exhibit brittle failure fracture behaviour and poor crack 

propagation, lacking good toughness behaviour and limiting to be used in structural 

applications [30]. 

Natural fibre composites and biocomposites can potentially replace the traditional 

synthetic composites as an alternative for lightweight applications [31-33]. The 

acceptance of biocomposites (partially or fully biodegradable) in critical applications 

such as automotive, marine and construction is dependent on their mechanical 

properties (strength, stiffens and toughness), thermal stability and durability during 

their service life [34]. Moreover, understanding their failure mechanisms is equally 
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critical in order for these biocomposites to be used in structural and semi-structural 

applications [35, 36].  

The main objective of the present work is to investigate the possibilities to optimise and 

tailor the properties and performance of viscose fibre reinforced composites by 

constructing sandwich type configuration. A sandwich composite is particularly useful 

in applications where superior flexural bending strength is required, such as floor and 

wall panels, doors and other structural elements. A good impact strength is also required 

in these applications, especially when used in transport applications. By using two 

different types of viscose fabrics, sandwich type laminates can be made, and this 

combination could have a potential use in automotive and transport applications. 

Therefore, in this study, sandwich composites were fabricated by incorporating specific 

configuration of a uniaxial non-crimp fabric in the surface layers of the sandwich and 

a non-woven fabric as the core layer. The resin was an unsaturated polyester, with a 

biobased content of 13 wt-%. The sandwich composites with different ratios of uniaxial 

and non-woven fabrics were fabricated by vacuum infusion method. The tensile, 

flexural and impact properties of obtained composites were investigated with a view to 

develop a low cost sandwich laminates for structural composite applications.  

2. Experimental details 

2.1 Materials  

Four sandwich composite lay ups with different composition of uniaxial fabric as 

surface layers and non-woven fabric as core layers were used. The composites were 

fabricated by vacuum infusion method using an unsaturated polyester resin (UPR), 

Envirez G8600 INF-60, supplied by Ashland, Finland. The resin has a biobased content 

of 13 wt-%, which is originated from soy bean oil derivatives. The biobased content for 

the resultant composite will therefore be higher, compared to a similar composite where 

a crude oil based resin is used. The polyester resin was initiated by a free radical 

peroxide, 2 wt-% methyl ethyl ketone peroxide (MEKP). To activate the initiator, 1 wt-

% cobalt octoate was mixed with the resin before adding the peroxide.   

The reinforcements used were two different types of viscose fabrics, a non-woven 

viscose fabric (NWF), and a uniaxial warp-knitted fabric (UF), see Figure 1. The non-

woven fabric was inserted in the middle of the lay-up as a core to give a sandwich type 

of laminate. This configuration is beneficial, as a sandwich layup consisting of two 
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mechanically stiffer surface layers with a less stiff core component can provide 

enhanced properties under flexural bending conditions. The non-woven viscose fabric 

was supplied by Suominen Nonwovens, Finland, and it is made from randomly 

distributed 1.7 dtex viscose staple fibres. The non-woven fabric is approximately 0.25 

mm thick, and has fibre areal weight of 50 g/m2. This non-woven is commonly used in 

hygienic products such as disposable towels. As the main reinforcement component 

located in the laminate surface layers, a warp-knitted uniaxial viscose fabric made by 

Engtex, Sweden was used. This is a non-crimp fabric, with uniaxially oriented weft 

yarns bound together with the warp yarn. The fabric has been developed for composite 

applications where toughness is required.  The weft yarn is a 2440 dtex Cordenka yarn 

with twist Z40 and composed of 1350 filaments. The warp yarn is a thin polyester yarn. 

The weft yarn is the main reinforcing component, while the warp yarn has no 

reinforcing effect. The surface weight of the fabric is 238 g/m2, and the thickness is 

approximately 0.4 mm. 

2.2 Lay-up of reinforcements 

Four different types of sandwich composite configurations were used and their detailed 

compositions are illustrated in Table 1 and the laminate lay-up is shown in Figure 2.  

The total reinforcement weight ratio varied from 22 wt-% for the sandwich laminate 

SL1 with one uniaxial fabric in each of the surface layers, and to 40 wt-%, for the 

sandwich laminate SL4 with 3 non-woven fabrics in the core layer. SL2 and SL3 had 

intermediate reinforcement weigh ratios, 27 wt-% respective 34 wt-%. The lay-up 

configurations were selected so that same thickness of the laminates were obtained in 

the vacuum infusion mould used. By using this lay-up, a set of sandwich laminates were 

obtained were the weight ratio of the uniaxial non-crimp fabrics increased from 

laminate SL1 (9 wt-%) to laminate SL4 (37 wt-%).  

2.3 Composite fabrication 

The sandwich composites were fabricated using vacuum infusion (VI) moulding system 

obtained from Composite Integration, United Kingdom. The VI mould is composed of 

two parts: an aluminium bottom part and a toughened glass upper part with silicone 

sealants in-between. The mould can be heated by circulating heating oil in the bottom 

part. The mould cavity size was 200 x 200 x 4 mm, and the mould surfaces were 

polished with a release agent in order ensure easy demoulding. For all laminates, the 
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fabrics were cut into dimensions of 200 x 200 mm. The non-woven fabrics and the 

warp-knitted fabrics were arranged as shown in Figure 2. The mould was then closed 

tightly, and connected to a vacuum pump to give a vacuum around 100 kPa. The resin 

was prepared by first adding 2 wt.-% of MEK peroxide and then deaerating the mixed 

resin by vacuum. The mould was then connected to the resin pot by tubes from two 

opposite corners, as shown in Figure 3. This infusion direction was found as the most 

efficient, after some pre-trials. The resin infusion could be followed through the 

transparent upper glass mould, and the infusion was continued until complete mould 

filling. The polyester resin was then cured by heating the mould to 50 °C for 2 hours, 

and under vacuum.  After this, the laminates were demoulded, and put in an oven for 

additionally 24 hours at 50 oC in order to post-cure. The procedure was repeated 3 times 

for each laminate lay-up in order to ensure a reproducible processing, and also to obtain 

sufficient specimens for the mechanical testing. 

2.4 Testing and characterisation 

2.4.1 Tensile and flexural testing 

Tensile and 3-point bending flexural tests were performed on a Tinius Olsen H10KT 

universal testing machine equipped with a 100R mechanical extensometer and a 5kN 

load cell. The tests were conducted accordance with the ISO 527 standard for tensile 

characteristics and the ISO 14125 standard for flexural characteristics. The loading rate 

of 10 mm/min was used for both tests. The specimens were cut to the dimensions given 

by the standards using a laser cutting machine (GCC, Laserpro Spirit, the Netherlands). 

The specimens were then conditioned for 24 h at 50 % relative humidity and the 

temperature of 23 oC.  At least 5 specimens from each laminate were tested immediately 

after conditioning and an average was taken. 

2.4.2 Low velocity impact test 

Zwick/Roell HIT230F instrumented falling weight drop impactor was used to perform 

a low-velocity instrumented falling weight impact testing. The specimens were cut by 

laser from the sandwich laminates to a specimen size of 70 x 70 mm. Four specimens 

were tested per each composite category. The impactor mass was 23.11 kg (weight of 

tup 0.278kg and weight of the impactor mass of 22.832 kg), which generated an incident 

energy of 25 Joules for each impact which was achieved by dropping the mass from 

110 mm height at room temperature.  The diameter of the hemispherical steel tup was 
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19.8 mm. Impact parameters such as peak force, absorbed energy and displacement 

were continuously recorded for every specimen at each impact event performed using 

a load cell and a strain–gauge striker fitted on the system. The impact testing system 

was also equipped with an anti-rebound device to prevent the multiple impacts on the 

specimens. The specimens were clamped using rigid clamping plates. An overview of 

drop weight impact mass, hemispherical impact tup and clamping systems are presented 

in Figure 4.  

2.4.3 Fractured surface characterisation by SEM 

The images of fractured surfaces of the impacted sandwich composites were acquired 

and analysed using a Phillips XL30CP scanning electron microscope (SEM). The 

samples were metallised using pre-coated, thin gold film in a vacuum and the 

micrographs were obtained at a voltage of 15 kV.   

3. Results and discussion 

The tensile, flexural and the low velocity impact behaviours of the unsaturated polyester 

sandwich composites SL1 to SL4 have been studied experimentally. The influence of 

the different lay-up configurations of uniaxial warp-knitted and non-woven fabrics and 

their weight ratios in the sandwich on the tensile, flexural and impact properties 

including load bearing capability, energy absorption, impact damage characteristics 

from the falling weight impact are discussed in the following sections. These results are 

then further interpreted by SEM analysis of the fractured surfaces.  

3.1 Tensile strength and modulus 

The tensile strength and modulus of the sandwich composites are depicted in Figure 5. 

The tensile strength shows an increasing trend from 50 MPa for laminate SL1 to a 

significantly increased strength of 160 MPa for SL4 with the highest reinforcement 

weight fraction, 39.8 wt-%. This increase in strength is attributed to the fibre weight 

fraction as well as increased ratio of the stiffer uniaxial fabric ratio. The tensile strength 

follows quite clearly the uniaxial warp knitted fabric content, which is 9.3 wt-% for 

laminate SL1, and 36.9 wt-% for laminate SL4. It evident that uniaxial fabric resulted 

in a significant increase of tensile strength, and SL4 could be considered as a laminate 

consisting of only the uniaxial fabric. This is expected as the higher mechanical strength 

was achieved due to the uniaxial orientation of the fabrics in the laminate.  
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It is evident from Figure 5 (b) that the tensile modulus does not follow a trend similar 

to tensile strength. The tensile modulus recorded approximately from 7 GPa for 

laminate SL1, 8 GPa for laminate SL2 and SL4 and 9 GPa for laminate SL3. The 

increased amount of uniaxial fabric content has contributed in higher modulus, as 

expected. The standard deviation for the modulus is rather large, which can be attributed 

to variation in fibre alignment in the surface layers. It is established that when fibre 

alignment is not perfect, the cut fabrics will be compressed in the mould upon closure, 

and then the longitudinal uniaxial orientation is partly lost. This is a draw-back in the 

used processing by vacuum infusion in a rather small size mould.  

The elongation at max force is approximately 9 % for all the laminates with the higher 

uniaxial fabric loading. This is well in line with the elongation values for neat viscose 

fibres, 15.4 ± 2.3 which has been reported [31]. The laminate SL1, shows a very low 

tensile elongation, around 1 %. This was seen as a brittle fracture behaviour for this 

laminate compared to the other laminates, and it shows the poor reinforcing effect of 

this type of non-woven fabric. The laminate consisted of only one uniaxial fabric in the 

surface layers, and these alone will not give sufficient tensile strength.  

3.2 Flexural strength and modulus 

The flexural behaviour of the sandwich laminates is shown in Figure 6. The flexural 

strength follows a trend similar to tensile strength can be observed. The laminates SL2, 

SL3 and SL4 exhibited an average flexural strength around 169, 183, 186 MPa, 

respectively. As it was observed for tensile modulus, the flexural modulus was almost 

the same for the specimens SL2 – SL4 with higher uniaxial fabric loading, 

approximately between 7 – 8 GPa. The elongation at break is also similar for these 

laminates, approximately 6 %. This shows that the laminate lay-up behaves as expected 

for a sandwich structure as an improved flexural strength is achieved with a total 

reinforcement weight ratio of 27.1 wt-% for SL2. The laminate SL1 behaved in a 

similar manner in the bending test as it was for the tensile, and has a clearly lowest 

flexural strength and modulus, around 114 MPa and 6 GPa, respectively, while the 

elongation at break is approximately 3.5%, nearly half the value compared to the other 

laminates. The same conclusion regarding the reinforcing effect of the non-woven 

fabric can be made as for the tensile properties. 

3.3 Low velocity impact properties 
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3.3.1 Force displacement traces 

Force against displacement curves obtained from the low-velocity impact testing for 

different specimens are illustrated in Figure 7. From these curves, it can be seen a strong 

relationship between the peak force and fibre configuration and ratios. The peak force 

for laminate SL1 has been recorded at approximately 3690 N, under the low velocity 

parameters used, the drop weight penetrated this specimen, and this is also shown by 

an unstable displacement indicating early delamination initiation. The force-

displacement curves for sandwich laminates SL2, SL3 and SL4 follow a more stable 

propagation than that of for SL1. The increased uniaxial fabric ratio increased the 

impact force and with a lower displacement. The increase in displacement despite the 

reduction on force for less uniaxial fabric contained specimens is attributed to the higher 

loading of the ductile staple fibres in the non-woven fabrics located in the sandwich 

core. 

The results show that the higher the percentage of uniaxial warp-knitted reinforcement 

in the surface layers, the stronger the composite sandwich become, which can be 

attributed to the uniaxial and non-crimp structure of the warp-knitted reinforcements. 

The laminate SL2 with 2 layers of uniaxial fabric in the surface layers has a peak force 

of approximately 4740 N, laminate SL3 with 3 layers of uniaxial fabric in surface layers 

has recorded approximately 5160 N as the peak force, and the laminate SL4 with 4 

layers of uniaxial fabric in surface layers has recorded the highest result approximately 

at 5390 N. The uniaxial warp-knitted fabrics overlaying each other acts as strong points 

in the surface layers of the composite sandwich, resisting failure by absorbing and 

dissipating energy. The lower elongation at break for higher uniaxial warp-knitted 

content sandwich laminates suggests that uniaxial warp-knitted fibre configuration 

contributed to the increased stiffness of composite sandwich, as indicated by superior 

load bearing capabilities.  

3.3.2 Force-time comparisons 

The force-time traces corresponding to impact event for each specimen subjected to 

incident energy of 25 Joules is illustrated in Figure 8. Force is generally defined as 

reaction force exerted by the specimen to the impactor. As shown, the maximum force 

increased with the increase in uniaxial warp-knitted fibre content. The force time curves 

for all specimens are mountain-like, almost parabolic. In the case of laminate SL1, it is 
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noticeable that there is an early load drop which corresponds that there is unstable early 

delamination. As the contents of uniaxial warp-knitted fabric increased, the height of 

the mountain like curves also increase. The time taken to complete the impact event is 

different for each laminate. It is evident that the higher weight percent of warp-knitted 

fabric in the sandwich surface layers give a better impact resistance, hence taken longer 

time to complete the impact event compared to lower uniaxial warp-knitted content 

laminates. The laminate SL1 has shown that the failure and initial damage occurred 

over a shorter time than that of higher reinforcement loaded laminates. As shown in 

Figure 8, it is evident from the test-time traces that there is a strong relationship between 

composite lay-up configuration and overall materials strength. Laminate SL1with 9.3 

wt.-% warp-knitted fabric and 12.7 wt.-% non-woven fabric exhibiting the lowest test 

time shows that this lay-up was the weakest one as it had the least amount of time in 

contact with the impactor, and failing shortly after the impact. It is interesting to note 

the correlation between the fibre weight percentage and configuration for each of the 

system investigated. The non-woven fibres aligned in a non-uniform random manner 

did not achieve high peak load, and limits its stiffness and strength. Test time, which is 

impact event, gradually increases as the percentage of uniaxial warp-knitted fabric 

increased.  

3.3.3 Energy-time comparisons 

Typical absorbed energy versus time plots for different laminates is depicted in Figure 

9. It is clear from the figure that laminate SL1 fractured as the peak energy, 

corresponding to the maximum value, did not reach as high as for other samples. This 

shows that when this laminate is being impacted at the incident energy of 25 Joules, the 

structure was fully penetrated. This is due to the low percentage of non-woven fabric 

in the core allowing the energy to pass through and not be absorbed. Whereas, the 

specimens made from the warp-knitted and non-woven laminate configurations 

designated as SL2, SL3 and SL4 did not puncture upon impact energy of 25 Joules as 

evidenced showing lower energy absorbed and higher recovered energy. In the case of 

SL1 plate, all the incident energy was absorbed showing no recovery energy, as the 

damage was fully penetrated. The absorbed energy decreases with increase in recovery 

energy for warp-knitted and non-woven plates as illustrated in Table 2, exhibiting 

improved impact performance. 
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3.4 Impact damage and failure modes  

Post impact damage images of the sandwich laminates are presented in Figures 10 and 

11. The visual inspection of impacted specimen SL1 (Figure 10 a) clearly shows that 

the specimens have undergone fully penetration damage, as the impactor has pierced 

straight through. Because of this nature of failure, all modes of failure seemed to have 

occurred. It is clear that matrix cracking, fibre breakage at the rear face fibre pull outs, 

and delamination are present. Large chunks of the matrix have sheared out of the sample 

showing how it delaminated.  

Fibres around the main impacted entrance hole show that fractured and pulled fibres 

were unable to withstand the impact force. The matrix seemed to have shattered in a 

brittle manner, and material loss (spalling) was observed. A fairly obvious circular hole 

was present when looking at both front and rear faces, showing severe damage from 

the impactor tup. This confirms the poor impact performance of the non-woven fabric 

as composite reinforcement. 

For impacted specimens SL2, SL3 and SL4 (Figure 10 b-d), the damage area and size 

of SL2 shows larger than for SL3 and SL4. The damage spread is similar, all showing 

roughly the similar pattern. A shockwave like effect is clear to see on the impacted 

faces of these samples, where the impacted energy was spread throughout the face 

within the warp-knitted fabrics.  

The rear faces of all specimens show similar damage propagation, however, large 

penetration hole and fibre shear out were visible for SL1 (Figure 11 a). For the other 

specimens, crack was clearly visible (Figure 11 b-d), showing rupture as well as 

delamination of fibres. The extent of damage seems larger for samples with low weight 

ratio of warp-knitted fabric configuration. 

Additionally, elongated shape like damage cracks are presents on the impacted and rear 

faces of specimens SL2, SL3 and SL4, respectively, showing the shockwave of the 

impacted energy being spread throughout the face of the samples. This shows that the 

energy absorbed into the non-woven face. Higher weight ratio of non-woven fabric 

seems allowing less deformation upon impact, showing these are more impact resistive 

configurations. A crack across the rear faces showing the dissipation of energy through 

the sample not being fully absorbed by the fibres, and again cracking the brittle 

unsaturated polyester matrix. 
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It is clear from the results that laminates SL2 and SL3 performed very similarly in terms 

of absorbed energy and test times, due to very similar fibre configurations. Whereas 

laminate SL4 absorbed the highest energy, and under closer visual inspection, 

performed the best in terms of impact resistance.  

3.5 Fractured surface of impacted samples 

A representative SEM images of fractured surfaces of impact damage for different 

specimens at 500 magnification are shown in Figure 12. From visual inspection of the 

impacted 9.3 wt.-% uniaxial fabric/12.7 wt.-% non-woven fabric specimens SL1 

(Figure 12 a), it is clear that matrix cracking and fibre pull outs, and delamination were 

present. Large chunks of the matrix seemed to have sheared out of the sample. From 

the SEM image, it seems that there was a weak fibre matrix interface (weak adhesion 

between fibre and matrix) as a result, fibre debonding and pull out damage were 

observed. If the interfaces are weaker than the matrix, then composite can fail in the 

fibre matrix interface at early stage. This may have contributed for the lowest force and 

the highest deformation for SL1 as evidenced by force versus displacement traces 

(Figure 7). For SL2 on the other hand (Figure 12 b), the fractured surfaces of the 

unsaturated polyester matrix reveal that the fibres are exposed, unravelled and pulled 

out. 

For SL3 (Figure 12 c), the matrix was cracked and the fibres were bended and fractured. 

The higher ratio of warp-knitted cellulose fibres onto unsaturated polyester matrix has 

contributed to the improved properties compared to other samples such as SL1 and SL2 

evidenced by higher impact force and improved penetration resistance. The fractured 

surface of SL4 is shown in Figure 12 d. It was observed that unsaturated polyester 

matrix has cracked in a brittle fashion and some bundles of fibres are exposed. Although 

the fibres are exposed, they are not pulled out as it was for SL1 and as a result, 

contributed moderately improving load bearing capability.  

SEM representation image of SL1 specimen at the higher magnification is illustrated in 

Figure 13. It is clear from the SEM images that delamination and fibre pull out are the 

predominant failure modes for higher non-woven contained specimens, whereas for 

higher warp-knitted contained specimens, matrix cracking, fibre bending and breakage 

are the main failure modes.  

4. Conclusions 
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The work presented in this study investigated the mechanical properties of viscose 

sandwich composites composed of uniaxial warp-knitted viscose fabrics as surface 

layers and non-woven viscose fabrics as the sandwich core. The aim was to investigate 

if a low cost randomly oriented non-woven viscose fabric could be used as a component 

in structural composites. This non-woven fabric was placed between layers of uniaxial 

non-crimp fabrics, so that a sandwich type laminate was obtained. By combining a 

higher cost and high performing fabric, with a low cost fabric, it was possible to reduce 

the overall costs, without a major sacrifice of mechanical performance, if the loading 

of the non-woven fabric is not too high, as was the case for laminate SL1. Combining 

the percentage of uniaxial warp-knitted and non-woven fabrics with varying 

configurations was found to be effective for improved impact resistance behaviour. It 

was evident from the results that samples with higher uniaxial fibre weight and 

configuration can withstand a significantly higher force.  

The tensile test results showed that sandwich laminates SL2, SL3 and SL4 exhibited 

acceptable tensile strength and tensile modulus, which should meet most common 

composite application specifications. Their performance could be further enhanced by 

increasing the overall reinforcement loading. The laminate SL1 exhibited a low tensile 

strength at break, and a low elongation at maximum loading. This laminate 

configuration was shown not sufficient for any structural applications. 

From the low velocity impact test results, a significant increase in peak force was found 

at the higher warp-knitted fibre percentage. Sandwich laminate SL4 recorded the 

highest peak force of approximately 5390 N. This was due to the highest weight ratio 

of the uniaxial reinforcement (36.9 wt.-%) having strong cross over points within the 

composite being able to absorb higher impact energy and dissipating it more evenly 

through fibres. The maximum peak force decreased with fibre weight, as laminates SL3, 

SL2 and SL1 recorded 5160, 4740 and 3690 N respectively.    

The higher content and configuration of uniaxial warp-knitted samples in combination 

with non-woven reinforcement not only exhibited better impact damage resistance but 

also provided enhanced tensile and flexural properties. From the experimental results, 

it can be concluded that the combination of a warp-knitted uniaxial fabric with low cost 

non-woven fabric can provide suitable cost effective biocomposites with good 

mechanical performance, which provide significant cost-property benefits in many 

engineering applications.  
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Figure captions: 

Figure 1: The viscose fabrics used in the study, a) a non-woven fabric with randomly 

oriented fibres, b) a warp-knitted uniaxial fabric with the uniaxial weft yarns oriented 

in the longitudinal direction of the . 

Figure 2: The used sandwich composite laminate lay-up, showing the distribution of 

the uniaxial warp knitted fabric in the bottom and upper surface layers and the now-

woven fabric in the middle core layer 

Figure 3: The used resin injection directions in the vacuum infusion mould. The 

arrows show that the resin flow from the two inlet corners to the vacuum outlet in the 

mid part. The resin injection directions could be observed through the transparent 

upper mould part.  

Figure 4: Drop weight impact test set up: (a) impactor mass, (b) enlarged view of 

impactor tup and (c) enlarged view of clamping system. 

Figure 5: (a – c): Tensile strength at max loading, tensile modulus and elongation at 

max loading for the biocomposite sandwich laminates. 

Figure 6: (a – c): Flexural strength, flexural modulus and flexural deformation at break 

for the studied biocomposite sandwich laminates.  

Figure 7: Force versus displacement traces for different samples. 

Figure 8: Force versus test time traces for different samples. 

Figure 9: Absorbed energy versus test time traces for different samples. 
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Figure 10: Visual inspection for damage patterns of different specimens impacted 

showing front face damage (a) SL1, (b) SL2, (c) SL3, (d) SL4. 

Figure 11: Visual inspection for damage patterns of different specimens impacted 

showing rear face damage (a) Sl1, (b) SL2, (c) SL3, (d) SL4. 

Figure 12: Micrographs of fractured surface obtained from SEM for different 

samples: (a) SL1, (b) SL2, (c) SL3, (d) >SL4. 

Figure 13: SEM representation image of SL1 specimen at the magnification of x1400. 
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(a) 

 

(b) 

Figure 1: The viscose fabrics used in the study (a) a non-woven fabric 

with randomly oriented fibres, (b) a warp-knitted uniaxial fabric with the 

uniaxial weft yarns oriented in the longitudinal direction of the photo. 
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Figure 2: The used sandwich composite laminate lay-up, showing the distribution of 

the uniaxial warp knitted fabric in the bottom and upper surface layers and the now-

woven fabric in the middle core layer 

 

 

Figure 3: The used resin injection directions in the vacuum infusion mould. The 

arrows show that the resin flow from the two inlet corners to the vacuum outlet in the 

mid part. The resin injection directions could be observed through the transparent 

upper mould part. 

SL1 
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SL3 

SL4 
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Figure 4:  Drop weight impact set up: (a) impactor mass, (b) enlarged view of 

impactor tup and (c) enlarged view of clamping mechanism 
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Figure 5 (a – c): Tensile strength at max loading, tensile modulus and elongation at 

max loading for the sandwich laminates SL1 – SL4. 
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Figure 6 (a – c): Flexural strength, flexural modulus and flexural deformation at break 

for the studied sandwich laminates SL1 – SL4. 
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Figure 7: Force versus displacement traces for different samples 

 

 

Figure 8: Force versus test time traces for different samples 
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Figure 9: Absorbed energy versus test time traces 
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(d) 

Figure 10: Visual inspection for damage patterns of different specimens 

impacted showing front face damage (a) SL1, (b) SL2, (c) SL3, (d) SL4 
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(a) 

 

(b) 

  

 

(c) 

 

(d) 

Figure 11: Visual inspection for damage patterns of different specimens 

impacted showing rear face damage (a) SL1, (b) SL2, (c) SL3, (d) SL4 
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Figure 12: Micrographs of fractured surface obtained from SEM for different 

samples: (a) SL1, (b) SL2, (c) SL3, (d) SL4 

 

 

 

Figure 13: SEM representation image of SL1 specimen at the magnification of x1400 
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Table captions: 

Table 1. Composition for the sandwich laminates SL1 to SL4. UF = uniaxial fabric, 

NWF = non-woven fabric,  

UPR = unsaturated polyester resin. 

Laminate UF 

(g) 

NWF 

(g) 

 UPR 

(g) 

 UF 

(wt-

%) 

NWF 

(wt-

%) 

UF + 

NWF 

(wt-%) 

Sandwich laminate (SL1) 19 26  160  9.3 12.7 22.0 

Sandwich laminate (SL2) 38 18  150  18.4 8.7 27.1 

Sandwich laminate (SL3) 57 12  140  27.7 5.8 33.5 

Sandwich laminate (SL4) 76 6  124  36.9 2.9 39.8 
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Table 2. Average impact test results for various laminates 

Laminate types Maximum 

Force 

(N) 

Maximum 

displacement 

(mm) 

Maximum 

Energy 

(J) 

Energy 

absorbed 

(J) 

Sandwich 

laminate (SL1) 

3690.00 10.22 25.53 25.53 

Sandwich 

laminate (SL2) 

4740.00 7.12 26.76 23.86 

Sandwich 

laminate (SL3) 

5160.00 6.39 26.71 23.01 

Sandwich 

laminate (SL4) 

5390.00 5.82 26.54 22.60 

 

 


