40 research outputs found

    Electromagnetic ULF/ELF oscillations caused by the eruption of the Tonga volcano

    Get PDF
    The eruption of the Tonga volcano on January 13 and 15, 2022 and related intense lightning activity led to the excitation of a number of specific electromagnetic oscillations in different frequency ranges. We examine properties of these oscillations, using data from magnetometers of various types located in Kamchatka and in the Pacific region. We confirmed that there might have been a geomagnetic response to the formation of an acoustic resonance between the Earth surface and the ionosphere: localized harmonic oscillations with a frequency 3.5–4.0 mHz, which lasted for ~1.5 hr, were detected ~15 min after the beginning of the eruption at distance of ~800 km. An increase was observed in the intensity of the Schumann resonance at stations in the Far East. Broadband emission stimulated by intense volcanic lightning was detected to occur in the Pc1 range (2–5 Hz). The emission presumably results from the excitation of the magnetosonic waveguide in the upper ionosphere by lightning activity

    Crystallization engineering as a route to epitaxial strain control

    Get PDF
    The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO3 and (001)LaAlO3substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO3 results in a coherently strained film, the same films obtained on (001)LaAlO3 showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001)SrTiO3. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state

    Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD"

    Get PDF
    Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency. (C) 2016 Author(s).Peer reviewe

    Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014

    No full text
    According to World Wide Lightning Location Network (WWLLN) data, a sequence of lightning discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka. Information on the ash cloud motion was confirmed by the measurements of atmospheric electricity, satellite observations and meteorological and seismic data. It was concluded that WWLLN resolution is enough to detect the earlier stage of volcanic explosive eruption when electrification processes develop the most intensively. The lightning method has the undeniable advantage for the fast remote sensing of volcanic electric activity anywhere in the world. There is a good opportunity for the development of WWLLN technology to observe explosive volcanic eruptions

    A Facile Route for Producing Single-Crystalline Epitaxial Perovskite Oxide Thin Films

    No full text
    We report how a low vacuum pressure process followed by a few-minute annealing enables epitaxial stabilization, producing high-quality, phase-pure, single-crystalline epitaxial, and misfit dislocation-free BiFeO<sub>3</sub>(001) thin films on SrTiO<sub>3</sub>(001) at ∼450 °C less than current routes. These results unambiguously challenge the widely held notion that atomic layer deposition (ALD) is not appropriate for attaining high-quality chemically complex oxide films on perovskite substrates in single-crystalline epitaxial form, demonstrating applicability as an inexpensive, facile, and highly scalable route

    Development of associated vaccine against Piv-3, Ibr, Bvd and chlamidiosis of cattle

    No full text
    As a result of clinical and epizootological examination of dysfunctional farms with respiratory and intestinal infections, the main agents of pneumoenteritis of calves and based on this we developed and associated inactivated vaccine against PIV-3, IBR, BVD and chlamidiosis were identified. The results of laboratory and production tests showed that it has high antigenic activity and immunogenic properties for laboratory animals, and its use in dysfunctional farms reduces the incidence of young animals, increases their birth rate and safety which has a positive effect on the efficiency of cattle breeding

    Probing the Stability of SrIrO3 During Active Water Electrolysis via Operando Atomic Force Microscopy

    No full text
    Mechanistic studies of oxide electrocatalysts for heterogeneous water oxidation have been primarily focused on understanding the origins of activity, with fewer studies studying fundamental properties influencing stability. The main challenge is directly observing and quantifying local structural instability under operating conditions. In this work, we provide a dynamic view of the perovskite stability as a function of time and operational voltage using operando electrochemical atomic force microscopy (EC-AFM). Specifically, we study the degradation pathways of SrIrO3, a highly active electrocatalyst, during the oxygen evolution reaction (OER) by tracking the potential-dependent Sr leaching and perovskite dissolution at the nanometer scale. This material serves as a model system for degradation studies of perovskite AMO3 oxides, exhibiting both A-cation leaching and transition metal (M) dissolution. We show that Sr leaching precedes perovskite dissolution by up to 0.8 V, leading to a wide voltage window of stability where water oxidation occurs on a Sr-depleted surface without significant corrosion. Moreover, we reveal that the stability of the perovskite surface is strongly influenced by the electrolytic environment and that corrosion rates differ dramatically as a function of dissolved Sr concentration. Ultimately, our study demonstrates the overall stability of perovskite oxides during electrocatalysis can be substantially improved by suppressing A-site leaching
    corecore