28 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    GFR α2/neurturin signalling regulates noxious heat transduction in isolectin B4- binding mouse sensory neurons

    No full text
    The GFR {alpha}2 receptor is the cognate co-receptor for the neurotrophic factor neurturin and GFR {alpha}2 is selectively expressed by isolectin B4 (IB4)-binding nociceptive sensory neurons. Here, we used two physiological approaches in combination with mice that have a targeted deletion of the GFR {alpha}2 gene (GFR {alpha}2 -/- mice) in order to determine whether GFR {alpha}2/neurturin signalling regulates the functional properties or the survival of IB4-binding nociceptors. Because 50% of IB4-binding neurons respond to noxious heat and because patch clamp recordings of isolated dorsal root ganglion sensory neurons allow one to neurochemically identify subpopulations of neurons, we analysed the noxious heat responsiveness of IB4-positive and -negative small-diameter neurons isolated from adult GFR {alpha}2 -/- and littermate control mice. The percentage of IB4-positive neurons that had large (> 100 pA) heat-evoked inward currents was severely reduced in GFR {alpha}2 -/- mice (12%) compared to wild-type littermates (47%), and this loss in large-magnitude heat currents was accounted for by an increase in neurons with very small (< 100 pA) heat-evoked currents as well as an increase in neurons with no detectable heat current. Counts of IB4-positive and -negative neurons, as well as counts of unmyelinated axons in the saphenous nerve, confirmed that the loss in neurons with large-amplitude heat currents was due to a deficit in heat transduction and not a decrease in cell survival. The effect was modality specific for heat because mechanical transduction of all fibre types, including IB4-positive C fibres, was normal. Our data are the first to indicate a transduction-function role for GFR {alpha}2/neurturin signalling in a specific class of sensory neurons

    KCC2 interacts with the dendritic cytoskeleton to promote spine development.

    No full text
    The neuron-specific K-Cl cotransporter, KCC2, induces a developmental shift to render GABAergic transmission from depolarizing to hyperpolarizing. Now we demonstrate that KCC2, independently of its Cl− transport function, is a key factor in the maturation of dendritic spines. This morphogenic role of KCC2 in the development of excitatory synapses is mediated by structural interactions between KCC2 and the spine cytoskeleton. Here, the binding of KCC2 C-terminal domain to the cytoskeleton-associated protein 4.1N may play an important role. A more general conclusion based on our data is that KCC2 acts as a synchronizing factor in the functional development of glutamatergic and GABAergic synapses in cortical neurons and networks
    corecore