40 research outputs found

    Rehabilitation of face-processing skills in an adolescent with prosopagnosia: Evaluation of an online perceptual training programme

    Get PDF
    In this paper we describe the case of EM: a female adolescent who acquired prosopagnosia following encephalitis at the age of eight. Initial neuropsychological and eye-movement investigations indicated that EM had profound difficulties in face perception as well as face recognition. EM underwent 14 weeks of perceptual training in an online programme that attempted to improve her ability to make fine-grained discriminations between faces. Following training, EM’s face perception skills had improved, and the effect generalized to untrained faces. Eye-movement analyses also indicated that EM spent more time viewing the inner facial features post-training. Examination of EM’s face recognition skills revealed an improvement in her recognition of personally-known faces when presented in a laboratory-based test, although the same gains were not noted in her everyday experiences with these faces. In addition, EM did not improve on a test assessing the recognition of newly encoded faces. One month after training, EM had maintained the improvement on the eye-tracking test, and to a lesser extent, her performance on the familiar faces test. This pattern of findings is interpreted as promising evidence that the programme can improve face perception skills, and with some adjustments, may at least partially improve face recognition skills

    Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer’s disease

    Get PDF
    This study was supported by grants from National Institute of Health Aging (NIA) and National Institute of Neurological Disorders and Stroke (NINDS) . F.G.-M. and J.A. were supported by the Alzheimer’s Research UK, the RS MacDonald Charitable Trust, and the BRAINS 600th Anniversary fund S.S.Y received Howard Mossberg Distinguished Professorship endowment from the University of Kansas.Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer’s disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models. Here, we establish the in vivo consequences of upregulation of EP expression in amyloid-β peptide (Aβ)-rich environments, leading to changes in both long-term potentiation and learning and memory of transgenic animals. Specifically, increasing EP augmented cerebral Aβ accumulation. EP-mediated signal transduction via reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to Aβ-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be rescued by blocking either ROS or p38 MAP kinase activity.Publisher PDFPeer reviewe

    Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2

    Get PDF
    BACKGROUND:Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. METHODOLOGY/ PRINCIPAL FINDINGS:Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands

    From Rapid Place Learning to Behavioral Performance: A Key Role for the Intermediate Hippocampus

    Get PDF
    Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional-anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping), failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial) place learning into navigational performance
    corecore