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Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied,
whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point
relevant to this translation is that hippocampal organization is characterized by functional-anatomical gradients along
the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines
from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such
place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of
selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze
procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place
cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance
based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact
electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping),
failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction
between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the
intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral
control, is critical to translate rapid (one-trial) place learning into navigational performance.
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Introduction visuospatial encoding along the hippocampal longitudinal, or
septotemporal, axis that runs from the septal pole, close to the

A classical distinction in animal learning theory is that
between “learning” and “performance” [1,2]. The processes

septum, to the temporal pole, close to the amygdala. Main
hippocampal connections display septotemporal topograph-

involved in encoding and storing new information are
conceptually distinct from those involved in translating that
information into useful behavior. The recent preoccupation
with plasticity and encoding mechanisms has sometimes led
to this distinction being forgotten, but there are dangers in
doing so [3]. The present study focuses on the neuro-
anatomical substrates of the learning-behavior translation
with particular attention to the issue of how rapid place
learning results in effective navigational behavior.

Different theories hold that the hippocampus mediates
certain forms of rapid learning, including place learning [4-
11]. For example, when rats explore a novel environment,
hippocampal principal neurons rapidly form place codes, as
reflected by place-specific firing [9,12-14]. Recent research
has focused on how neocortical visuospatial inputs, entering
the hippocampus from the entorhinal cortex [15-18], are
processed by different subregions along the transverse and
longitudinal axes of the hippocampus to mediate place
representations. This work has revealed that different
subregions along the hippocampal transverse axis (dentate
gyrus, CA3, and CAl) make distinct computational contribu-
tions, including rapid encoding and pattern completion (CA3)
[19-22], pattern separation (dentate gyrus and CA3) [23,24],
and the comparison of new and stored information (CA1) [25-
27]. In addition, there is a gradient in the precision of
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ical gradients; that is, they gradually get weaker toward the
septal or temporal pole, so that they are mainly restricted to
approximately one- to two-thirds starting from either pole,
and thereby an anatomical differentiation emerges into three
partly overlapping domains with different sets of connectivity:
a septal and temporal region, and, between them, an
intermediate region (Figure 1A) [28-32]. With respect to the
precision of visuospatial encoding, it is critical that the septal
to intermediate hippocampus exhibit strong connectivity to
the dorsolateral domain of the entorhinal cortex, which
receives strong visuospatial neocortical inputs and where
neurons, so-called grid cells, represent visuospatial informa-
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Author Summary

The ability to remember locations in space is dependent on an area
of the brain called the hippocampus. A much-studied property of
neurons in the hippocampus is that they rapidly come to represent
or code for specific places—i.e., the hippocampus “learns” places—
as animals or humans move through an environment. Here, we
identified in rats the hippocampal substrate enabling the translation
of place learning into appropriate search and approach behavior
(similar to the task of returning to a novel place where you parked
your car). We examined the impact of selective lesions to distinct
parts of the hippocampus on behavior requiring rapid place learning
and on in vivo electrophysiological models of hippocampal learning
such as place-related neuronal activity. We showed that translation
of rapid place learning into efficient search behavior requires the
“intermediate” region of the hippocampus, a region that likely
combines anatomical links to visuospatial information processed by
the neocortex with links to behavioral control through prefrontal
cortex and subcortical sites. In contrast, the so-called “septal” region
of the hippocampus, which features the relevant anatomical links to
visuospatial information processing, can sustain rapid place learning
(as reflected by formation of place-related neuronal firing), but not
translate such learning into appropriate search and approach
behavior.

tion at a fine scale (grid-like arranged firing fields of down to
20-cm diameter whose centers are spaced at as little as 30 cm
apart); in contrast, the temporal hippocampus is mainly
connected to the ventromedial domain of the entorhinal
cortex, which receives little visuospatial neocortical input and
where fine-grained grid-cell firing patterns are replaced by
coarser ones (firing fields of up to 3-m diameter spaced at 5 m)
(Figure 1A, top left) [15,18,33,34]. Consistent with this, precise
place-field codes for small areas (ca. 10- to 20-cm diameter) in
conventionally sized recording environments (ca. 1 m X 1 m or
smaller) are restricted to the septal to intermediate hippo-
campus [25,35-40]. In contrast, most neurons in the temporal
hippocampus do not display precise place codes; they show
larger and less accurate place fields (several meters in
diameter) when recordings are performed in relatively large
environments (e.g., an 18-m linear track) [38].

This important work has focused on hippocampal place
encoding. However, how are hippocampal place codes
translated into behavior? This translation may involve differ-
ent anatomical routes as a function of whether information
has been recently and rapidly acquired or been consolidated in
the neocortex through incremental learning and/or over time
[10,41,42]. With respect to rapidly and recently acquired place
memory, particularly in circumstances when relevant infor-
mation is changing frequently and cannot be consolidated into
neocortex, the translation into behavior is likely to involve
hippocampal links to medial prefrontal cortical areas, such as
the prelimbic and infralimbic cortex, and subcortical sites,
such as the mediodorsal striatum, the nucleus accumbens, the
amygdala, lateral septum, and hypothalamus. This is because
these brain regions provide access to brain-stem sites
mediating motor responses [43-46] and are considered to play
key roles in behavioral-control processes (including emotional,
motivational, sensorimotor, and executive functions)
[30,31,45,47-54]. A key idea is that whereas the septal to
intermediate hippocampus mediate fine-grained, accurate
place encoding (through interactions with the dorsolateral
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domain of the entorhinal cortex), strong neuroanatomical and
functional links to behavioral control (through connections to
prefrontal cortex and subcortical sites) are mainly provided by
intermediate to temporal hippocampal regions [29-32,45,55-
61] (for neuroanatomical details, see Figure 1A and accom-
panying legend). It follows that the intermediate hippocampus,
where substrates of accurate place encoding converge with
direct links to behavioral control, may be critical for the
translation of rapid place learning into behavior [47].

Based on these considerations, we hypothesized that the
intermediate hippocampus would be both necessary and
largely sufficient for behavior on tasks requiring rapid place
learning. In contrast, neither the septal nor temporal pole of
the hippocampus, each comprising only one of the two
complementary sets of functional connectivity (i.e., to dorso-
lateral domain of entorhinal cortex or to prefrontal cortex
and subcortical sites), would sustain such performance.
Nevertheless, the septal pole, through its connectivity with
the dorsolateral domain of the entorhinal cortex, should be
able to mediate the rapid encoding of accurate place
representations (even though unable, on its own, to translate
this information into action). Importantly, this latter pre-
diction may appear paradoxical from theoretical viewpoints
that focus on hippocampal encoding mechanisms alone, but
it follows directly from the perspective put forward here
emphasizing the distinction between hippocampal encoding
and behavioral performance based on such encoding. To test
these hypotheses, we examined in rats the impact of highly
specific partial hippocampal lesions, sparing distinct parts
along the septotemporal axis, on performance of a watermaze
task requiring rapid, one-trial, learning of a new place every
day and on electrophysiological models of rapid encoding in
the septal hippocampus, long-term potentiation (LTP) [62],
and place-related cell firing.

An important qualification that influenced our experimen-
tal plan is that rapid place learning may have distinct
mechanisms from incremental learning over many trials
[21-23,41,42,63-67]. Indeed, in contrast to our predictions
for a one-trial learning paradigm with a daily changing goal
location, previous watermaze studies using reference memory
paradigms, in which the same location is learned over many
trials across several days, have found that small residuals of
hippocampal tissue, especially at the septal pole, can be
sufficient to sustain good performance [39,57,68,69]. In fact,
slow learning can even occur in the absence of the hippo-
campus [66,67]. Through incremental training, accurate place
information might be acquired [42] and/or consolidated [41]
in the neocortex and, from there, be translated into behavior
[46]. This route would not require direct hippocampal links to
behavioral control. Therefore, one of our watermaze experi-
ments contrasted the impact of hippocampal lesions on
performance based on rapid, one-trial, learning with that
based on incremental learning.

Results

Experiment 1: The Intermediate, but Not Septal or
Temporal, Hippocampus Can Sustain Performance Based
on Rapid Place Learning in the Watermaze

Rapid place-learning task and presurgical training. We used
a modification of the delayed-matching-to-place watermaze
task [70]. On four daily trials, rats had to find a hidden escape
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Figure 1. Functional Connectivity of the Hippocampus along the Septotemporal Axis and Ibotenate-Induced Hippocampal Lesions Sparing Different

Septotemporal Levels

(A) Schematic summary of main functional connectivity of the hippocampus, which is shown in a rat brain with midline (ml) and rhinal fissure (rf)
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indicated for orientation (center, drawing adapted from Figure 1A of [32]). Hippocampal connectivity is topographically organized along a
septotemporal (magenta-blue) gradient. Connections decline either toward the septal pole (close to the septum) or toward the temporal pole (close to
the amygdala), so that they are largely restricted to approximately one- to two-thirds starting from either pole. Thus, a differentiation into three partly
overlapping domains emerges with distinct sets of connectivity: a septal and temporal region, and, between them, an intermediate region. The
septotemporal topography of connectivity to the entorhinal cortex [33,127,128], the main link to visuospatial processing (top left), and to medial
prefrontal cortices [127-131] and subcortical sites (mediodorsal striatum and nucleus accumbens [60,132,133], the amygdala [30,118], lateral septum,
and hypothalamus [31,134]), which link the hippocampus to behavioral control (i.e.,, emotional, motivational, sensorimotor, and executive functions)
(right), is indicated by magenta-to-blue coloration corresponding to different septotemporal levels of the hippocampus. Note that, within the
entorhinal cortex, connectivity to neocortical sites conveying highly processed visuospatial information [135] and the precision at which entorhinal grid
cells represent visuospatial information [15,34] decline from dorsolateral to ventromedial parts (magenta to blue). Reciprocal connections with the
entorhinal cortex and projections to nucleus accumbens and lateral septum are related to the entire septotemporal hippocampal axis, whereas the
projections to the medial prefrontal cortex (prelimbic-infralimbic cortex) and the reciprocal connectivity with the amygdala are restricted to the
intermediate and temporal hippocampus. Direct projections to hypothalamic nuclei and mediodorsal striatum largely originate from the temporal
portions of the hippocampus (including temporal aspects of the intermediate region).

Overall, the septal to intermediate hippocampus, via connections to the dorsolateral portions of the entorhinal cortex, are functionally associated with
precise visuospatial processing underlying rapid accurate place encoding; the temporal to intermediate hippocampus, via connections to medial
prefrontal cortex and subcortical sites, are functionally linked to behavioral control. A convergence of links to precise visuospatial processing and to
behavioral control is essentially restricted to the intermediate hippocampus.

(B) Cresyl-violet-stained coronal sections through the hippocampus (hippoc.) of exemplar brains from the five groups in experiments 1 and 2 (from left
to right): sham lesion, i.e., an intact hippocampus; partial lesions, sparing continuous chunks of approximately 40% of total hippocampal volume in the
intermediate region, at the temporal pole, or at the septal pole; complete hippocampal lesion, i.e., virtually no intact hippocampus (sections are
arranged from anterior to posterior, with the most anterior section at the top; lesions were bilateral, but to save space, only one hemisphere is used for
illustration). In the hippocampus drawings that are used to indicate the different lesion groups (in this and the following figures), white represents
intact tissue, and black indicates lesioned tissue. Lesions occasionally resulted in complete removal of the targeted tissue, mainly in the complete
hippocampal lesion group, but more commonly in degenerated tissue without intact neurons (outlined by stippled line).

(C) Three-dimensional reconstruction of bilateral hippocampal volume prepared from the coronal sections of the brains with a sham-lesion and with the
three different partial hippocampal lesions. Intact hippocampal tissue is shown in dark red. In the brains with partial hippocampal lesions, the volume of
the intact (control) hippocampus is indicated in light red for comparison. Apart from the hippocampus, the brain silhouette (gray), with the midline (ml)
and the rhinal fissure (rf), is shown for orientation; the silhouette is rendered transparent where it would otherwise cover the view of the hippocampus.
The residual hippocampal volumes in the exemplar brains with partial hippocampal lesions shown in (B) and (C) were 41% in the intermediate region,
49% at the temporal pole, and 42% at the septal pole, respectively. In the exemplar brain with intended sparing at the septal pole, there was also some
unintended sparing of a small volume (5%) at the temporal pole; this temporal sparing appears relatively large in the depicted view of the three-
dimensional reconstruction, but an all-around view of the reconstruction clearly shows that it is only a very small piece of tissue. See Videos S1-54 for an
all-around view of the reconstructions.

doi:10.1371/journal.pbio.1000089.g001

platform that was moved to a novel location every day. They mean [SEM]: 285 = 1.0%) as expected based on chance

could learn the location on trial 1 of a day, and use this place
memory for efficient behavior on the remaining trials 2 to 4
of a day. Analysis mainly focused on trial 2, which was run
either 10-30 s (minimal time required for the experimenter
to complete one trial and start the next) or 20 min after trial
1 to assess the possible delay dependence of lesion effects.
Trials 3 and 4 mainly served to reinforce the task’s win-stay
rule, and were run 10-30 s apart. Rapid, one-trial, place
learning on this task is indicated by savings, i.e., a reduction
in escape latency between trial 1 and 2 of each day [70].
However, latencies strongly depend on chance, and may
furthermore be reduced substantially through systematic
search strategies not relying on place memory, by the use of
single beacon cues, and by coarse estimates of position and/or
sense of direction mediated partly by extrahippocampal
structures [71]. Therefore, as an important modification of
the original task [70], we occasionally ran trial 2 as probe with
the platform not becoming available until after 60 s. During
this 60-s period, the rats’ search preference for the correct
area, a reliable and sensitive index of allocentric place
memory, was analyzed using the zone method and expressed
as percentage of time in the correct zone (Figure 2A and 2B).

Before surgery, rats were trained on this rapid place-
learning task for 8 d (analysis of presurgical performance was
restricted to the 89 rats that were included in the final
analysis based on the lesion examination at the end of the
experiments). They came to express one-trial place memory
reliably, as indicated by the robust savings between trial 1 and
2 (Figure 2C) and—when trial 2 was run as probe on days 4
and 8—by a percentage of time spent in the correct zone that
was more than twice as high (mean * standard error of the
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(12.5%; tgs=17.78, p < 0.001). At this stage, performance was
independent of the retention delay (10-30 s or 20 min)
between trial 1 and 2 (Figure S1). The rats were then divided
into performance-matched groups to receive the different
surgical treatments (Figure S1).

Partial hippocampal lesions selectively sparing intermedi-
ate, temporal, or septal hippocampus. Rats received partial or
complete cytotoxic hippocampal lesions (induced by stereo-
taxic ibotenic-acid injections) or sham surgery (Figure 1B and
1C). Three groups received partial hippocampal lesions
sparing approximately 40% of total hippocampal volume
(dentate gyrus, CA1-3; 100% was defined as the mean of the
sham-operated control group) at the septal pole (mean *
SEM: 43.3 * 1.0%; range: 36.4% to 48.4%; n = 13), at the
temporal pole (41.6 = 1.6%; 27.1% to 56.1%; n=22) pole, or
in the intermediate region (40.1 = 2.0%; 27.6% to 54.1%;n=
14). Particular attention was paid to ensuring that the volume
of spared tissue was equivalent between the partial hippo-
campal groups in order to avoid behavioral differences due to
volume effects. In addition, a group with complete hippo-
campal lesions (residual hippocampal volume: 1.9 £ 0.4%;
0% to 5.4%; n=14), and a sham-operated group, with intact
hippocampus (100.0 = 1.4%; 83.7% to 112.4%; n = 26), were
included (n refers to the number of rats that had acceptable
lesions and were included in data analysis; for additional
lesion analysis, see Text S1, Supplementary Results 1). Three-
dimensional reconstruction of the hippocampal sparing in
exemplar brains of the groups with partial hippocampal
lesions revealed bilateral, relatively symmetric residual tissue
chunks of similar size, at different locations along the
septotemporal axis (Figure 1C, Videos S1-54).
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Figure 2. Experiment 1: Rapid-Place Learning Task and Performance after
Partial Hippocampal Lesions Sparing the Intermediate, Septal, or
Temporal Hippocampus

(A) Rats had four daily trials (T1-T4) in the watermaze. The location of the
hidden escape platform (black dot) was constant within a day, but the
platform was moved to a novel location at the beginning of each day.
Thus, rapid place learning during T1 of each day enabled efficient
performance during T2 and the subsequent trials. The retention delay
between T1 and T2 was 10-30 s or 20 min, whereas all other intertrial
intervals (ITI) within a day were 10-30 s. T2 was occasionally run as probe
with the platform not coming up until after 60 s, during which time the
search preference for the area containing the platform location could be
measured.

(B) Zone analysis of search preference on probes: eight 40-cm-diameter
zones (stippled circles) were defined within the 2-m diameter of the
watermaze, including the correct zone, which was concentric with the
location of the platform (12-cm diameter; black dot) on T1 of the day.
The zones were nonoverlapping, evenly spaced, and symmetrically
arranged. The time rats spent in the different zones during the 60-s
probe trial was measured, and the percentage of time spent in the
correct zone was calculated as: (time in the correct zone/time in all eight
zones) X 100%. By chance, i.e., during random swimming, this value
should be 12.5%, whereas higher values indicate a search preference for
the correct zone based on one-trial place learning.

(C) To illustrate the task principle, latencies (mean * SEM) to reach the
platform are plotted for T1-T4 across the eight pretraining days
preceding the lesion surgery. Rats (n = 89) typically showed high
latencies on T1, reflecting searching for the novel platform location, and
substantially reduced latencies during subsequent trials, reflecting more
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efficient navigation based on the use of information learned during the
preceding trials (main effect of four daily trials, F3 55, =419.8, p < 0.0001).
Especially striking were the latency reductions (savings) from T1 to T2 (tgg
= 19.05, p < 0.0001), demonstrating one-trial learning. Across days,
mainly the first 4 d, there was an overall decrease in latencies (main
effect of days, F; 5gs =84.9, p < 0.0001) and improved latency reductions
between trials (interaction days X trials: F3q,1764 = 5.09, p < 0.0001),
indicating learning of the general task demands (swimming, moving
away from pool wall, win-stay rule). Data were collapsed for the two
different T1-T2 delays (10-30s or 20 min), which were used equally often
and for half of the rats each on every day. On days 4 and 8, T2 was run as
probe.

(D and E) Postsurgical performance: (D) percentage time (%time) in
correct zone (mean * SEM) on probes and (E) path lengths (mean *
SEM) to reach the platform on T1-T4, as well as path-length reductions
from T1 to T2 (savings, inset graph) in sham-lesioned rats, in rats with
approximately 40% of residual hippocampal volume in the intermediate,
temporal, or septal hippocampus, and in rats with complete hippo-
campal lesions (compare Figure 1B and 1C). Group differences: an
asterisk (*) indicates different from groups without asterisk (p < 0.025); a
number sign (#) indicates different from group with complete hippo-
campal lesions (p < 0.025); no additional significant differences (p >
0.05). All groups showed higher than chance (indicated by stippled line)
search preference and significant path-length reductions from trial 1 to 2
(t > 4.4, p < 0.04), except for the one with complete hippocampal
lesions (t < 3.0, p > 0.16).

doi:10.1371/journal.pbio.1000089.9g002

Postlesion performance on the rapid place-learning task. Of
the lesioned groups, only the one with an intact intermediate
hippocampus was unimpaired on the rapid place-learning
task (Figure 2D and 2E). There was an overall dependence of
performance on the retention delay between trials 1 and 2
(Figure S2), but group differences were all delay independent
(interactions involving groups X delays: F < 1.7, p > 0.17);
therefore, the main analysis focused on data averaged over
both delays. Rats with a residual intermediate hippocampus
showed similarly strong preference for the correct zone as the
sham group during trial 2 (run as probe) of postsurgical days
4 and 8; in contrast, rats with only the septal or temporal pole
of the hippocampus were strongly impaired, and rats with
complete hippocampal lesions showed no preference at all
(main effect of group: Fygs = 9.0, p < 0.0001; post hoc
comparisons and comparisons to chance: see figure) (Figure
2D). Path-length savings between trial 1 and 2 (which we
analyzed instead of latencies, as some of the lesions affected
swim speed; see below) were impaired in rats with only the
septal pole spared, and abolished by complete hippocampal
lesions (interaction groups X trials: Iy 950 = 8.3, p < 0.0001;
main effect of group on “savings™: Fyg4 = 10.7, p < 0.0001;
post hoc comparisons and comparisons to chance: see figure)
(Figure 2E). Here, and in all other experiments of the present
study, performance measures did not correlate with the
residual hippocampal volume in any of the different groups
(all » < 0.41, p > 0.15), which was not unexpected, as we
endeavored to keep variability in lesion size to a minimum.
The results support the hypothesis that only the intermediate
hippocampus, where connectivity to the dorsolateral domain
of the entorhinal cortex converges with direct links to
prefrontal cortex and subcortical sites, can sustain normal
performance based on rapid place learning, whereas the
septal or temporal hippocampus, each comprising only one
of the two complementary sets of connections, cannot.

Experiment 2: Incremental versus Rapid Place Learning
At first glance, our results may appear inconsistent with

previous findings that rats with only 20%-40% of residual

hippocampal volume at the septal or temporal pole can
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express similar place memory in the watermaze as control
groups [68,69]. However, in these studies, incremental
learning was possible, as the rats were trained to the same
place over many trials. To compare performance based on
rapid versus incremental learning, we therefore trained the
different lesion groups with one constant platform location
for 5 d, with eight trials per day, and trials 2 and 6 of each day
run as probes to closely monitor performance. On day 6, one
additional probe trial was run to assess incrementally
acquired long-term memory independent of within-day
learning. On day 7, a subset of the rats (the last four of five
replications, a total of 72 rats: 20 sham-operated, 13 with
residual intermediate hippocampus, 15 with residual tempo-
ral pole, 10 with residual septal pole, and 14 with complete
hippocampal lesions) was retested for performance based on
rapid place learning, with a novel platform location and four
trials (trial 2 run as probe); this retest was included to rule out
that nonspecific recovery due to extended postsurgical
training might account for any better performance after
incremental place learning (Figure 3A).

The differential effects of hippocampal damage on
performance based on rapid versus incremental place
learning were strikingly revealed by search preference on
trial 2 of the first day, i.e., after one learning trial, and on trial
1 of day 6, i.e., after 40 trials run across the preceding 5 d
(Figure 3B). After only one learning trial, rats with sham
lesions or residual intermediate hippocampus focused their
search on the correct zone, whereas rats with only the septal
or temporal pole, or with complete hippocampal lesions were
impaired (Figure 3B, left), replicating the results from
experiment 1 (compare Figure 2D); in contrast, after slow,
incremental learning over 40 trials, groups did not differ
anymore (Figure 3B, right) (interaction group X probe trial
[day 1, trial 2, vs. day 6, trial 1]: Fyg4 = 2.5, p < 0.05; main
effect of group, day 1, trial 2: F4 g4=11.0, p < 0.0001, post hoc
comparisons: see figure; main effect of group, day 6, trial 1:
Fyg4=1.4, p > 0.22). Interestingly, the sham-operated rats and
all groups with partial hippocampal lesions showed some
rapid within-day performance improvements that were not
carried over to the next day, so that latencies on trial 1 of a
day tended to be higher than on the last trial of the preceding
day and percentage of time in the correct zone tended to be
lower on the first probe of a day (trial 2) than on the last
probe (trial 6) of the previous day. In contrast, rats with
complete hippocampal lesions gradually improved across
trials and days (Figure S3). In previous studies, using
incremental training in the watermaze, rats with residual
20%-40% of hippocampal volume at the septal pole did not
differ from sham-lesioned rats at a stage when performance
was still hippocampus dependent, i.e., impaired in rats with
complete hippocampal lesions [69] (under certain training
conditions, this also pertained to rats with 20%-40% of
hippocampal volume restricted to the temporal pole [68]).
These findings were confirmed in the present experiment: on
trial 1 of day 4, paths were longer in rats with complete
hippocampal lesions (Fyg4 = 2.76, p < 0.03), as compared to
sham-operated rats (p < 0.01) and the partial-lesion groups (p
< 0.03), excepting rats with remnants at the temporal pole
for which the difference just failed to reach significance (p =
0.054); the partial lesion groups did not differ from each
other or the sham-lesioned rats (p > 0.3) (Figure S3A). These
results demonstrate that hippocampal contributions are
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Figure 3. Experiment 2: Performance Based on Incremental, as
Compared to Rapid, Place Learning after Partial Hippocampal Lesions
Sparing the Intermediate, Septal, or Temporal Hippocampus

(A) Rats were trained to one constant platform location on eight daily
trials (T1-T8) for 5 d, with T2 and T6 of each day run as probes to closely
monitor performance improvements. The intertrial interval (ITI) was 10
min. On day 6, one additional probe trial was run to assess performance
based on incremental place learning across the five preceding days
unconfounded by within-day learning. On day 7, rats were retested on
the rapid place-learning task, with four trials to a novel location and T2
run as probe. The retention delay between T1 and T2 was 20 min, and
the other ITls were 10-30 s.

(B) Search preference for the correct zone (mean * SEM) after one-trial
place-learning (day 1, T2) and after 40 trials of slow, incremental learning
(day 6, T1) in the different lesion groups (compare Figure 1B and 1Q).
ANOVA indicated significant group differences only on day 1, T2 (see
main text), and results of the post hoc comparisons are indicated: an
asterisk (*) indicates different from groups without an asterisk (p <
0.015); a number sign (#) indicates different from the group with the
hippocampal residual at the septal pole and the one with complete
hippocampal lesions (p < 0.04); no additional significant differences (p >
0.4). On day 1, T2, search preference for the correct zone was above
chance (stippled line) in rats with sham-lesions and with hippocampal
residuals in the intermediate region or at the temporal pole (t > 3.1, p <
0.01), but not in rats with hippocampal residuals at the septal pole or
with complete hippocampal lesions (t < 1.5, p > 0.19). In contrast, all
groups showed a significant preference for the correct zone on day 6, T1
(t > 4.8, p < 0.0005).

(C) When retested for performance based on one-trial place learning on
day 7, T2, there were marked group differences in search preference for
the correct zone (mean = SEM): an asterisk (*) indicates different from
sham-operated group (p < 0.025); a number sign (#) indicates different
from group with complete hippocampal lesions (p < 0.025); a section
symbol (8) indicates different from group with complete hippocampal
lesions and group with only the septal pole spared (p < 0.01); no
additional significant differences (p > 0.09). Sham-operated rats and
those with a residual intermediate hippocampus showed a significant
preference for the correct zone (t > 3.9, p < 0.002), whereas rats with
hippocampal residuals at septal or temporal pole did not differ from
chance (t < 1.2, p > 0.26), and rats with complete hippocampal lesions
spent even less time in the correct zone than expected by chance (t;3 =
4.93, p < 0.0004).

doi:10.1371/journal.pbio.1000089.g003
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especially required for behavior requiring rapid place
learning; if incremental place learning is possible, good
navigational performance can be achieved with hippocampal
residuals at the septal or temporal pole, and eventually even
without a hippocampus.

In stark contrast to the similarly good performance across
groups after incremental place learning (Figure 3B, right),
there were again marked group differences when rats were
subsequently retested for performance based on rapid place
learning on day 7 (Figure 3C; for path-length data, see Figure
S4). During the probe on trial 2, after one training trial to a
novel location, only the sham-operated rats and those with a
residual intermediate hippocampus significantly preferred
the correct zone; rats with only the septal or temporal pole of
the hippocampus did not differ from chance, and rats with
complete hippocampal lesions spent even less time in the
correct zone than expected by chance (as they kept searching
for the platform in the previous, incrementally learnt
location, but had not learnt the novel location) (main effect
of groups: Fy 67 = 18.52, p < 0.0001; between-groups post hoc
comparisons and comparisons to chance: see Figure 3C).
These results corroborate the special importance of the
hippocampus for performance based on rapid place learning.
Interestingly, even though the group with an intact inter-
mediate hippocampus was still the best of all groups that had
any damage to the hippocampus, it was significantly impaired
as compared to the sham-operated group (p < 0.0025),
possibly related to interference from the preceding incre-
mental place-learning task.

Experiments 3 and 4: Intact Entorhinal Cortex-Dentate
Gyrus Plasticity and Intact Place-Related CA1 Cell Firing in
Hippocampal Residuals at the Septal Pole

Rats with hippocampal residuals at the septal pole showed
poor performance on the rapid place-learning task, whereas
rats with a residual intermediate hippocampus displayed
largely intact performance. According to our hypothesis, this
finding does not reflect that a residual septal pole is less
capable of accurate place encoding/learning than a residual
intermediate hippocampus (but rather that a residual septal
pole, lacking the links of the intermediate hippocampus to
behavioral-control sites, is incapable of translating place
learning into performance). Indeed, in the intact hippo-
campus, neurons at the septal pole encode visuospatial
information at even higher precision than neurons in the
intermediate region [37,38,40]. We predicted that such
encoding in the septal hippocampus would be unaffected by
neurotoxic lesions to the rest of the hippocampus, given that
such lesions should not affect the relevant entorhinal-
hippocampal interactions [16,18,39,71]. To test this point,
we examined properties of the residual hippocampal circui-
try at the septal pole using electrophysiological models of
information encoding, predicting that synaptic plasticity and
place-field encoding would be essentially normal.

In experiment 3, evoked field potentials in the perforant
path-dentate gyrus pathway, a main entorhinal input to the
hippocampus, were recorded from the septal hippocampus of
anesthetized rats that were sham-lesioned, i.e., had an intact
hippocampus (mean * SEM: 100 * 3.5%, range: 84.4%-
107.5%; n = 6), or had received partial hippocampal lesions
sparing only the septal pole (341 = 1.7% of control
hippocampus, 27.1%-41.7%; n="T) (Figure 4A). Input-output
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Figure 4. Experiment 3: Functional and Plastic Entorhinal Cortex-

Dentate Gyrus Connectivity in Hippocampal Residuals at the Septal Pole

(A) Electrolytic lesions (white arrowheads) marking the stimulation site in
the perforant path (bipolar electrode, left) and the recording site in the
ipsilateral dentate gyrus in cresyl-violet-stained coronal sections. Photos
are from a brain with partial hippocampal lesion sparing the septal pole
(35% of hippocampal volume), and damage to CA3 (black arrowheads) is
visible at the level of the recording site.

(B) Input-output curves recorded from rats with sham lesions or with
partial hippocampal lesions sparing residuals at the septal pole: different
measures of the evoked field response (mean * SEM) are plotted as
function of the stimulus intensity (0.1-1 mA). An asterisk (*) indicates
significant main effect of group (p < 0.03).

(C) Paired-pulse inhibition in a septal hippocampal residual: field
responses evoked by paired stimulation (0.5 mA, 20 ms apart; average
of 15 samples). Note the large population spike in the first response and
its virtual absence in the second response. The residual hippocampal
volume in this case was 27%.

(D) Brief tetanic stimulation induces similar LTP of the evoked response
in rats with sham lesions and with partial hippocampal lesions sparing
residuals at the septal pole. The evoked response is expressed as
percentage baseline slope (mean * SEM).
doi:10.1371/journal.pbio.1000089.g004

curves indicated no significant difference in field-potential
slopes between these groups (F;; =2.72, p > 0.12) (Figure 4B,
left). However, in lesioned rats, perforant-path stimulation
triggered neuronal firing more readily than in sham-operated
rats, as indicated by significantly higher population spike
amplitude and population spike/slope ratio (main effects of
group: Fy 11 > 7.16, p < 0.02) across all stimulation intensities,
except for the lowest (interactions group X intensity: Fg 99 >
2.02, p < 0.05) (Figure 4B, middle and right). These findings
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Figure 5. Experiment 4: Place-Related Firing of Neurons in Hippocampal
Residuals at the Septal Pole

(A) Cresyl-violet-stained coronal section showing the tracks of the four
tetrode bundles (circled by stippled line; individual tracks indicated by
black dots) used to record place-related activity from the CA1 region of
the septal hippocampus; tracks were marked by passing an electric
current through the tetrodes after completion of the recordings. The
section is from rat 10, which had a hippocampal residual of 26% at the
septal pole. A slight disruption of the CA3 layer is visible (black
arrowhead), indicating the beginning of the lesion to intermediate and
temporal hippocampus.

(B) CA1 cells in hippocampal residuals at the septal pole show accurate
and stable place-related firing in a familiar environment (Fam): Firing
fields of complex-spike cells recorded from three rats (3, 5, and 10) with
hippocampal residuals at the septal pole during two successive trials in
the familiar environment. The color-coded firing-rate maps and, below,
the location of spikes (red) on the rat's trajectory (gray) are shown for the
two cells of each rat with the highest spatial-information score. The peak
firing rate for each trial is indicated in red numbers above and the
correlation between the firing-rate maps for the two successive trials is
shown in black below. Note that neurons often changed their peak firing
rate between trials, but that the firing positions remained stable. See
Figure S5A and S5B for additional cells recorded from the rats with
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hippocampal residuals at the septal pole and for cells recorded from a
control group with intact hippocampus.

(C) CAT1 cells in hippocampal residuals at the septal pole rapidly change
their firing pattern in a new environment. Firing fields of two complex-
spike cells recorded from one rat with hippocampal residuals at the
septal pole (rat 10; the two neurons are not identical with the two
neurons whose firing patterns are shown in [B]) during a succession of
trials in the familiar (Fam) and a new (New) environment. All firing-rate
maps are scaled to the same maximum firing rate, equal to the maximum
of all four trials and indicated in red to the right; correlations between
the firing-rate maps for different trials are indicated in black below. Note
that neuron 1 forms a new place field in the new environment, whereas
neuron 2 becomes nearly silent. See Figure S6 for additional cells from
rat 10 and from two control rats with intact hippocampus.
doi:10.1371/journal.pbio.1000089.g005

may reflect that lesion of the temporal and intermediate
hippocampus removed feed-forward inhibition by longitudi-
nally projecting inhibitory interneurons, which have been
suggested to support coordination of neuronal firing along
the septotemporal axis in the intact hippocampus [72-74].
Feedback inhibition, as indicated by paired-pulse inhibition
[75], could readily be demonstrated in hippocampal residuals
at the septal pole (Figure 4C), ruling out a general hyper-
excitability. Importantly, tetanization resulted in robust LTP
in both groups (Figure 4D). Slopes measured 55-60 min after
the tetanus were significantly increased as compared to the 5
min preceding the tetanus in both groups (¢t > 2.87, p < 0.05)
and did not differ between groups (¢, = 1.15, p = 0.27). Thus,
hippocampal residuals at the septal pole displayed normal
synaptic plasticity.

In experiment 4, single-unit recordings revealed accurate
and stable place-related firing in hippocampal residuals at the
septal pole (Figure 5A) in rats that were foraging in large
open fields surrounded by prominent distal visual cues.
Starting with a highly familiar environment, 42 putative
pyramidal neurons were recorded from three rats with partial
hippocampal lesions sparing only the septal pole (mean *
SEM: 30.4 * 2.3% of control hippocampus, range: 25.8%-
33.02%). These neurons exhibited highly place-related firing
that was stable between two recording trials in the familiar
environment (typically separated by 30 to 60 min) (Figures 5B
and SHA); spatial firing was similar to that of pyramidal
neurons (n = 28) recorded from the septal pole of an intact
hippocampus (100 = 11.5%, 79.9%-119.8%) in control rats
(n = 4) (Figure S5B).

Quantitative measures of place-related firing (average and
peak rates, spatial information, and sparsity) and its stability
between two successive trials in the familiar environment
(correlation, changes in average and peak firing rate, move-
ment of firing peak) were calculated (mean * SEM) and
compared between groups (data of different cells recorded
from the same rat were averaged, so that each rat contributed
one value to the group means) (Table S1). Only the stability
measures differed, with a lower between-trials correlation of
firing patterns in cells from septal remnants (0.75 = 0.03, as
compared to 0.88 = 0.02 in the intact hippocampus; ¢5 = 3.58,
p < 0.02; correlation coefficients were subjected to Fisher’s z'-
transformation before the ¢-test). This difference could be
accounted for by a relatively high between-trials change in
peak firing rate in place cells of septal remnants (0.28 = 0.04;
compare also Figures 5A and S5A), which was twice as high as
in cells from an intact hippocampus (0.14 * 0.03; t;=3.17, p
< 0.025). Importantly, the position of peak firing was equally
stable in both groups (movement of firing peak between trials

April 2009 | Volume 7 | Issue 4 | 1000089



in centimeters: septal remnants, 14.3 * 3.6; intact hippo-
campus, 16.5 = 4.2, t; < 1).

Finally, when exposed to a new environment, CAl
pyramidal neurons (n = 9) in a hippocampal residual at the
septal pole rapidly changed their firing patterns reflecting
normal remapping [13] (Figures 5C and S6). Thus, overall,
neurons in hippocampal residuals at the septal pole displayed
normal accurate and rapid place encoding.

Experiment 5: The Intermediate Hippocampus Is
Necessary for Performance on the Rapid Place-
Learning Task

Experiment 5 addressed whether the convergence of
substrates for rapid place encoding with those for behavioral
control in the intermediate hippocampus was really critical
for performance based on rapid place learning, as implied by
our conceptual framework. Alternatively, independent, par-
allel contributions of substrates mediating rapid place
encoding and of links to behavioral control at the septal
and temporal tip of the hippocampus, respectively, could
mediate performance. To decide between these two alter-
natives, our last experiment tested whether residuals at the
septal and temporal tip (ca. 20% of total hippocampal
volume spared at each tip), separated by a lesion to the
intermediate hippocampus, could sustain performance. Thus,
experiment 5 is the “mirror image” of experiment 1: whereas
experiment 1 established that hippocampal tissue restricted
to the intermediate hippocampus was sufficient for perform-
ance based on rapid place learning, experiment 5 tested
whether damage restricted to this area causes an impairment
in performance. Importantly, whereas different septotempo-
ral levels are connected through intrahippocampal longitu-
dinal projections, there is no evidence for direct links
between the septal and temporal 20% of the hippocampal
volume, and the only intrahippocampal connection between
these septal and temporal tips may be by way of the
intermediate region, which receives afferents from the septal
tip and projects to the temporal tip [28,76-80]. Thus, the
septal and temporal tips spared by the lesions made to the
intermediate hippocampus in the present experiment would
essentially be disconnected.

Rats were pretrained on the rapid place-learning task as
described for experiment 1 and then divided into two
performance-matched groups (Figure S7). One group re-
ceived sham surgery (hippocampal volume, mean * SEM:
100.0 £ 2.1%, range: 90.7%-115.0%; n = 12); the other one
had lesions to the intermediate hippocampus, sparing
approximately 20% of hippocampal volume each at the
septal (19.9 = 1.2%, 12.3%-25.4%) and the temporal (22.1 *
0.75%, 8.3%-27.1%) tip of the hippocampus (n = 11) (Figure
6A and 6B; Video Sb5) (n refers to the rats included in data
analysis; for additional lesion analysis, see Text S1, Supple-
mentary Results 1). Lesions to the intermediate hippocampus
virtually abolished performance (Figure 6C). Performance did
not significantly depend on the retention delay between trial
1 and 2 (Figure S8), and group differences were delay-
independent (interactions involving groups X delays: F' < 1),
so the analysis focused on data averaged over both delays. In
contrast to sham-operated rats, rats without the intermediate
hippocampus showed no search preference for the correct
zone on probe trials (main effect of group: Fjo; = 10.9, p <
0.004) and no savings between trial 1 and 2 (interaction
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Figure 6. Experiment 5: Lesions to the Intermediate Hippocampus,
Sparing the Temporal and Septal Tip, Abolish Performance Based on
Rapid Place Learning

(A) Cresyl-violet-stained coronal sections through the hippocampus of
one exemplar brain with lesion to the intermediate hippocampus
(arranged from most anterior, top left, to most posterior, bottom right;
degenerated tissue without intact neurons outlined by stippled line).
(B) Three-dimensional reconstruction of bilateral hippocampal volume in
the same brain (compare Figure 1C for explanation and abbreviations).
The residual hippocampal volume in the exemplar brain was 43%: 21% at
the temporal and 22% at the septal tip. See Video S5 for an all-around
view.

(C) Performance on the rapid place-learning task in the watermaze
(compare Figure 2A), as reflected by percentage time (% time) in correct
zone on probes and path lengths on T1-T4, as well as path-length
reductions from T1 to T2 (savings, inset graph) (all data: mean = SEM), in
rats with lesions to the intermediate hippocampus and in sham-operated
rats. An asterisk (*) indicates significant group differences (p < 0.005).
Sham-operated rats showed higher than chance search preference and a
significant path-length reduction from trial 1 to 2 (t;; > 523, p <
0.0003), but rats with lesions to the intermediate hippocampus did not
(t10 < 0.41).

doi:10.1371/journal.pbio.1000089.g006

groups X trials: Fi5 g3 = 6.8, p < 0.001; main effect of group on
savings: I 91 = 14.3, p < 0.002; comparisons to chance: see
figure) (Figure 6C). Thus, separated hippocampal residuals at
the temporal and septal tip cannot sustain performance.

Increased Swim Speed after Lesions Involving Damage to
the Temporal Half of the Hippocampus

In each of the watermaze experiments (experiments 1, 2,
and b5), lesions affecting the temporal half of the hippo-
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campus increased swim speed (Text S1, Supplementary
Results 2). This increase is in line with previous observations
[66] and corroborates the close association of the temporal
half of the hippocampus with sites mediating motor function
[55].

Discussion

The present findings show that the intermediate hippo-
campus is critical for watermaze performance based on rapid,
one-trial, place learning with the goal location changing each
day. Partial hippocampal lesions sparing the intermediate
hippocampus (ca. 40% spared of total volume) left perform-
ance on the one-trial task largely intact, whereas partial
hippocampal lesions sparing the septal or temporal pole (ca.
40% of total volume) impaired performance. Performance
was abolished by lesions to the intermediate hippocampus,
sparing the septal and temporal tips (ca. 20% of hippo-
campus each). Although a residual hippocampal circuitry at
the septal pole could not sustain behavioral performance
based on rapid-place learning, evoked-potential and place-
cell recordings revealed it had functional and plastic
connectivity to the entorhinal cortex and could rapidly and
accurately encode visuospatial information. Thus, residual
circuitry at the septal pole can “learn” rapidly, but cannot
alone translate a rapidly acquired place representation into
appropriate behavior. Such translation, our data suggest,
requires the intermediate hippocampus, where substrates of
rapid place learning converge with links to behavioral-
control functions.

Rapid Learning of Changing Locations versus Incremental
Learning of a Stable Location

Hippocampal lesions caused a quite different pattern of
results on the rapid, one-trial, place-learning task, in which
the goal location changed every day, than on the incremental-
learning task, in which rats were trained to the same location
over many trials across days and which belongs to the more
commonly used reference-memory paradigms. A conceptu-
ally important difference between these two watermaze tasks
relates to the relevance of hippocampal information encod-
ing and neocortical memory acquisition/consolidation.

On the rapid-learning task, the goal location is constantly
changing from day to day, requiring the rapid encoding of
stimuli and their relations, for which the hippocampus and its
synaptic plasticity are critical [8,9,21-23,41,42,64,66,70,81,82].
Information about the goal location must be constantly
updated by hippocampal encoding mechanisms and, from the
hippocampus, secure direct access to behavioral control
systems. Consistent with this, we found that when rapid, one-
trial, learning of a novel place is required, the hippocampus,
especially the intermediate part, is essential for effective
performance (independent of retention delay, see Text S1,
Supplementary Discussion 1).

On the incremental-learning task, in contrast, all relevant
information is stable over time. It has been suggested that
under these circumstances, information can be consolidated
from the hippocampus into the neocortex [41,83,84] or
gradually be acquired by the neocortex [42]. From neocortical
storage sites, effective behavioral control is possible via
connections bypassing hippocampal pathways [46]. Although
hippocampal circuitry may normally contribute to incre-
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mental place-learning tasks, and even small residuals of such
circuitry, especially at the septal pole, may speed up
acquisition (discussed below), our experiment 2 demonstra-
ted that even rats with complete hippocampal lesions could
eventually, albeit at a much slower rate than a control group,
come to display accurate place navigation (as shown on probe
trials by their focused search preference in a small 40-cm-
diameter zone centered on the platform location). This
confirms and extends previous demonstrations of relatively
intact performance in the watermaze after extended incre-
mental training in rats with complete hippocampal lesions
[66,67] (also see Text S1, Supplementary Discussion 2).
Humans with hippocampal lesions, who show marked impair-
ments in place and declarative memory, can also come to
express accurate place [85] and semantic [86,87] memory,
when incremental learning is possible. Without the hippo-
campus, initially coarse neocortical representations of rele-
vant information, for example of places in the entorhinal
cortex [15,17], may slowly be sharpened into accurate,
nonoverlapping representations through incremental learn-
ing [42] and then be translated into behavior via direct
neocortical connections. Hippocampal circuitry may nor-
mally contribute to incremental place-learning tasks; how-
ever, it is not absolutely required, and relatively good
performance on such tasks can eventually be achieved
without the hippocampus, albeit very slowly (also compare
[66]).

Neither the Septal nor the Temporal Pole of the
Hippocampus Can Sustain Normal Performance Based
on Rapid Place Learning

Rats with hippocampal tissue restricted to the septal or
temporal pole were markedly impaired on all tests requiring
rapid, especially one-trial, place learning. Both groups
exhibited deficits in the main performance measure, search
preference during probes, whereas only the rats with tissue
restricted to the septal pole showed impaired path-length
savings.

A number of previous studies have found that rats with
partial hippocampal lesions sparing only the septal pole can
display efficient performance on place-learning tasks, where-
as rats with residuals at the temporal pole cannot (for review,
see [39,57]). For example, after 32 trials (eight trials/day, 4 d)
to the same platform location in the watermaze, rats with
hippocampal remnants of 20%-40% of total volume at the
septal pole showed relatively normal performance, whereas
rats with even 40%-60% spared hippocampal volume at the
temporal pole were substantially impaired [68,69]. What
accounts for this advantage of rats with septal hippocampal
sparing on the reference-memory version of the watermaze
task? Residual septal hippocampal circuitry is capable of
rapid place encoding, as revealed by our place-cell recording
experiments, even though it lacks the connectivity to relate
place codes directly to behavioral-control functions. How-
ever, as all relevant place information on the reference-
memory version of the watermaze task is stable, place
information acquired within hippocampus may, through
incremental learning and the process of systems-level con-
solidation, become established, or “interleaved,” into neo-
cortical networks [8,41,83,84,88,89], which can then translate
such stored information into behavior. A residual septal pole
may accelerate performance acquisition on watermaze
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reference-memory tasks, because neocortical learning aided
by rapid septal hippocampal place encoding is faster than
purely neocortical learning (even though eventually even rats
with complete hippocampal lesions can come to show good
performance). Importantly, however, several studies have
found that rats with 30%-50% of hippocampal volume at the
septal pole show performance deficits at early stages of
incremental place learning tasks [90], i.e., when performance
improvement likely depends on rapid learning and its
translation into action through direct hippocampal links to
behavioral control, and that these deficits diminish with
additional training [68,91,92]; performance deficits have also
been indicated on watermaze tests of one-trial place learning
as reduced savings [92,93] (but see [56]). Although the
boundary conditions under which the septal or temporal
pole of the hippocampus can sustain performance on place-
learning tasks remain to be clarified (also see [68]), our new
findings demonstrate that neither region alone can sustain
normal navigational performance based on rapid, one-trial,
place learning.

Our findings reflect, we suggest, that the temporal region of
the hippocampus cannot form accurate place codes, as it
lacks close links to the dorsolateral domain of the entorhinal
cortex, whereas the septal region, due to its connectivity with
this part of the entorhinal cortex, can rapidly form accurate
place codes, but not translate them into behavioral control,
due to the lack of connectivity to prefrontal cortex and
subcortical sites (see Introduction and Figure 1A). Several
lines of evidence, comprising recordings of single-unit firing
and of multisite coordinated activity, as well as studies using
lesion and pharmacological manipulations of relevant brain
sites (including disconnection approaches), support the
notion that hippocampal interactions with the dorsolateral
domain of the entorhinal cortex [16,94-96] and with medial
prefrontal cortex and subcortical sites, specifically the
mediodorsal striatum and nucleus accumbens [47,48,51,97-
104], are important for performance on place-learning tasks.
In support of our emphasis on the importance of hippo-
campal-prefrontal/subcortical interactions in interpreting
our results, the following findings are noteworthy. First,
lesions to medial prefrontal cortex or mediodorsal striatum
in rats [50] or glutamate-receptor blockade in the nucleus
accumbens of mice [105] impair performance on watermaze
rapid place-learning tasks similar to the one used in the
present study. Second, using crossed unilateral lesions or
pharmacological manipulations of the relevant sites, it was
demonstrated that disconnection of the hippocampus from
medial prefrontal cortex [48,103,104] or prefrontal dopamine
transmission [99], from mediodorsal striatum [101], or from
nucleus accumbens [48] impaired rats’ performance on
different dry-land or watermaze tasks requiring rapid place
learning. Third, electrophysiological recording studies
showed that neuronal activity in the hippocampus is
coordinated with activity in medial prefrontal cortex
[97,98], mediodorsal striatum [100], and nucleus accumbens
[102] while rats are using rapidly encoded place information
for efficient foraging behavior. Other subcortical sites, such
as amygdala, lateral septum, and hypothalamus, which have
been implicated in behavioral control and display strong
connectivity to temporal and intermediate parts of the
hippocampus [30,31], may also interact with the hippocampus
to translate place learning into behavior, but this possibility
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remains to be tested. The tendency, observed in the present
study, for rats with hippocampal residuals at the temporal
pole to show slightly better performance than those with a
residual septal pole is consistent with the functional
connectivity of the temporal 40% of hippocampus spared
in our experiments; this area, apart from featuring strong
links to prefrontal cortex and subcortical sites (see Figure
1A), has some connectivity to the dorsolateral and adjacent
intermediate domain of the entorhinal cortex [33], and cells
at the septal end of this area show relatively accurate place-
related firing [38].

The Septal Pole of the Hippocampus Can Rapidly Form
Place Representations, Even Though It Cannot Sustain
Task Performance

Although rats with only the septal pole of the hippocampus
were markedly impaired on the behavioral tests requiring
rapid place learning, their residual hippocampal circuitry
exhibited intact entorhinal-hippocampal plasticity and could
rapidly, within one exposure to a novel environment, form
accurate and stable place-related firing in CAl pyramidal
cells. Our electrophysiological findings support the idea
[39,57] that residual hippocampal circuitry at the septal pole,
due to connectivity to the dorsolateral domain of the
entorhinal cortex, can rapidly form and maintain accurate
place representations, even in the absence of the rest of the
hippocampus. However, such representations on their own
are not enough to sustain task performance based on rapid
place learning, as revealed by the poor performance of rats
with only the septal hippocampal pole intact. The deficits in
navigational performance could reflect that larger-scale place
representations, normally provided by neurons in more
temporal parts of the hippocampus, are required for route
planning [18,37,40]. However, a selective deficit in route
planning, i.e., increased path lengths to reach the target area
and relatively normal search preference for this area once it
was reached, is not supported by our behavioral data. Rather,
the marked performance deficits, despite an intact septal pole
of the hippocampus maintaining accurate place-cell firing,
highlight the importance of functional connectivity with
prefrontal cortex and subcortical sites provided by the
intermediate to temporal hippocampus.

Notably, apart from “pure” place codes, normal hippo-
campal firing can show additional characteristics, including
some that are indicative of the animal’s goals or motivation
[7,13,106-116]. Candidate neuroanatomical substrates to
confer motivational information to hippocampal neurons
include subcortical afferents from dopaminergic midbrain
neurons and amygdala that mainly target the intermediate to
temporal hippocampus [29,30,32,117-119]. Therefore, remov-
al of the temporal to intermediate hippocampus may
disconnect place cells in the septal pole from motivational
modulation; such disruption might also contribute to
performance impairments on the rapid place-learning task.
Interestingly, the reduced between-trials stability of the peak
firing rate we found in CA1 place cells from septal residuals
(experiment 4) may reflect a failure to accurately represent
the procedural and motivational variables characterizing the
recording trials (e.g., the rats had to perform a random-
foraging task to receive food reward), given the ample
evidence that the firing rate of place cells normally reflects
such information [7,107-110,114-116].
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From Place Memory to Task Performance: Functional
Integration in the Intermediate Hippocampus

Rats with a residual intermediate hippocampus performed
better than all other partial lesion groups on all tests
requiring rapid, one-trial, place learning. Remarkably, they
generally performed as accurately and efficiently as the sham-
operated control group. The exception to this was the retest
on the rapid place-learning task in experiment 2, when rats
with a residual intermediate hippocampus were performing
slightly worse than control rats, though still better than all
other lesion groups. This deficit was likely related to
interference from the preceding incremental training to
one location. Possibly, throughout incremental training,
hippocampal cells become increasingly recruited in the
representation of the target location [111], so that on a
subsequent retest requiring rapid learning of a novel
location, a reduced hippocampal circuit might have insuffi-
cient encoding capacity. Thus, it is important to note that
even though a residual intermediate hippocampus can
sustain performance based on rapid place learning, the septal
and temporal tips are not redundant, but processing in these
regions may be required to sustain normal behavior in more
challenging situations. Nevertheless, the importance of the
intermediate hippocampus for performance based on rapid
place learning was further revealed by the finding that lesions
removing this region, but sparing both the septal and
temporal tip, completely abolished performance on the
one-trial place-learning task, similar to complete hippo-
campal lesions.

The intermediate hippocampus combines connectivity to
the dorsolateral domain of the entorhinal cortex, where
visuospatial information is represented at a fine scale by grid
cells with fine-grained firing patterns—and consistently
relatively accurate place-related firing can be recorded from
the intermediate hippocampus [25,36,38]—with connectivity
to prefrontal cortex and subcortical sites, including nucleus
accumbens and mediodorsal striatum (see Figure 1A). These
connections are partially overlapping. In addition, extensive
intrahippocampal projections [28,76-78], which mediate
excitatory transmission [120,121], and synchronous neuronal
activity [122] are found along the whole longitudinal extent of
the intermediate hippocampus. Whereas the septal and
temporal tip of the hippocampus, as spared in experiment
5, should together also posses the two complementary sets of
connectivity (see Figure 1A), there are virtually no efficient
connectional routes between the septal and temporal tip,
except for those that involve steps in the intermediate region.
Thus, the intermediate hippocampus anatomically and
physiologically integrates two sets of functional links, namely
to precise visuospatial processing, through the dorsolateral
domain of the entorhinal cortex, and to behavioral control,
through prefrontal cortex and subcortical sites, and our
present data suggest that such integration is critical for the
translation of rapid place learning into adaptive behavior.

Whereas the present study highlights that the intermediate
hippocampus is critical for the translation of rapid place
encoding into behavior, previous functional imaging studies
in humans and mice have suggested that the intermediate
hippocampus also plays a key role in the encoding and
retrieval of multimodal associative memory [123-125]. More
specifically, information flow through the middle or inter-
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mediate hippocampus may mediate the binding or integra-
tion of different sensory modalities that, due to the
topography of the relevant neocortical connections, are
initially represented at distant septotemporal levels. This
view cannot readily account for the importance of the
intermediate hippocampus for performance based on rapid
place learning, as our place-cell recordings indicate that the
relevant place encoding and retrieval can be sustained by the
septal pole without contributions by other parts of the
hippocampus. However, it also emphasizes the integrative
properties of the intermediate hippocampus. Overall, an
intriguing picture is thus emerging of the intermediate
hippocampus as a key substrate for functional integration
along the longitudinal axis.

Materials and Methods

Rats. One hundred twenty-four adult male Lister-Hooded rats
(Charles River) were used for the behavioral experiments (experi-
ments 1, 2, and 5), 13 for the field-potential (experiment 3), and seven
for the place-cell recordings (experiment 4). They were housed in
groups of one to four in a temperature-controlled (20-23 °C) and
humidity-controlled (40%-55%) room with an artificial light:dark
cycle (lights on: 7 am to 7 pm). Rats had free access to food and water.
Only for the place-cell experiments were rats fed a restricted diet to
maintain them at approximately 90% of their free-feeding weight, so
that they were motivated to forage in the recording arena. Rats
weighed 250-350 g and were 10-14 wk old at surgery. Before the start
of experiments, all rats were habituated to handling by the
experimenters. Experimental procedures were conducted during
the light phase of the cycle as far as possible. Home Office regulations
for animal experimentation were followed (Project Licence No 60/
2484).

Surgery. Partial or complete fiber-sparing lesions of the hippo-
campus were made under halothane or isoflurane anesthesia using
bilateral stereotaxic microinjections of the neurotoxin ibotenic acid
(Sigma; 10 mg/ml in 0.1 M phosphate-buffered saline) through a 1-ul
SGE syringe (26 ga, 0.47-mm-diameter needle; WPI), as described in
detail elsewhere [68], except that injection coordinates and volumes
were adapted for the partial lesions to spare approximately 40% of
hippocampal volume at different septotemporal levels. Partial or
complete hippocampal lesions were achieved by injections of 0.05-
0.10 pl at 7-13 sites in each hemisphere (see Table S2). For sham
lesions, the empty injection needle was lowered into the neocortex at
as many sites as required for the complete or partial hippocampal
lesions, with the intention to induce comparable mechanical damage
to the cortex.

For the place-cell experiments, sham lesions or partial lesions
intended to spare the septal 40% of hippocampus were combined
with the implantation of one or two sets of four tetrodes (four
twisted, 17-um polyimide-coated Pt-Ir[9:1] wires) mounted in an
inner cannula (28 ga) connected to a light-weight microdrive (Axona);
in addition, two rats without additional surgical treatment were
implanted through small skull trepanations. The tetrodes were aimed
above the CA1 layer in the septal pole of the hippocampus (bregma
and lambda horizontally aligned, 3.5 mm posterior and 2.2-2.5 mm
lateral from bregma, and 2.00 mm below dura). An outer protecting
cannula (18 ga) on the microdrive was then lowered down to the dura,
before Vaseline was applied around the cannula, and the trepana-
tions above the lesions were filled with gauze for protection. The
microdrive was secured to the skull using small screws, one of which
served as electrical ground, and dental cement.

Watermaze experiments (experiments 1, 2, 5). Watermaze and general
procedures. An open-field watermaze, 2 m in diameter and filled with
water at 25 = 1 °C made opaque by the addition of 200 ul of latex
solution, was located in a well-lit room containing prominent visual
cues at variable distance from the pool and visible from the water
surface, so as to be used by the rats for orientation.

To start a trial, rats were placed into the water, facing the pool
walls, at one of four start positions (north [N], east [E], south [S], and
west [W]). They could escape on a single platform, 12 cm in diameter
and hidden from the animals’ sight 1-2 cm below the water surface.
The “Atlantis platform” was used, which can be withheld at >30 cm
below the water surface for a predetermined time, by a computer-
controlled electromagnet, before being raised to its normal position
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[126]. This enabled rewarded probe trials during which the rats’
search preference is first monitored for 60 s, and the platform is then
made available to reinforce spatially focused searching. Our
paradigms involved testing with different platform locations on an
inner ring (0.8-m diameter) or outer ring (1.4 m) concentric with the
pool (Figure S9). Every trial ended with the rat sitting for 30 s on the
platform before being returned to its cage. If an animal failed to
reach the platform within 120 s, it was guided there by the
experimenter.

The rats’ behavior was monitored by an overhead video camera
connected to a video recorder and a computer with WaterMaze
software (Actimetrics) in an adjacent control room. The software
aided collection of the following measures: latency and path length to
reach the platform location, swim speed, and the percentage time
spent in the correct zone (see Zone analysis of search preference below).

Rapid place-learning task. A modification of the delayed-matching-to-
place task [70] was used, in which trial 2 of a day was occasionally run
as a probe trial. Rats received four trials a day. The platform was
hidden in a novel location on trial 1 of each day and then remained in
this place for trials 2-4, on which rats could use rapidly encoded
place memory to reach the escape platform efficiently. All four start
positions were used daily in an arbitrary sequence, to discourage
egocentric strategies. Analysis focused on trial 2 of each day, on which
performance relied on place memory encoded within a single trial,
whereas trial 3 and 4 were run to reinforce the win-stay rule of the
task. Trials 1 and 2 were 10-30 s or 20 min apart (i.e., one-trial place
memory on trial 2 was assessed at two different retention delays),
whereas the delay was 10-30 s between the other trials. Search
preference in the correct location on probe trials has long been
recognized as the most reliable measure of place memory in the
watermaze, whereas latency measurements are highly dependent on
chance, and may be reduced efficiently through systematic search
strategies and the use of single beacon cues and through a coarse
estimate of position and sense of direction mediated partly by
extrahippocampal structures [71]. Therefore, as an important
modification of the original task, which purely relied on latency
measurements [70], trial 2 was occasionally run as rewarded probe
trial to measure the rats’ search preference for the zone containing
the platform location.

Incremental place-learning task. Rats were trained to a constant
platform location with eight trials a day, ca. 10 min (=3 min) apart,
for 5d (i.e., 40 trials altogether). Trials 2 and 6 of each day were run as
rewarded probe trials. Start positions changed between trials, to
discourage egocentric strategies. An additional rewarded probe trial
was run on day 6, to assess incrementally acquired memory
unconfounded by within-day learning.

Zone analysis of search preference. Search preference for the vicinity of
the platform location on probe trials was assessed as follows: Eight 40-
cm-diameter “virtual” zones, one of which (the “correct zone”) was
concentric with the platform location, were defined on the inner and
outer ring of the pool, so that the zones were nonoverlapping, evenly
spaced, and symmetrically arranged (Figure S9). The time spent in
each of these eight zones during the 60-s probe trial was determined
automatically using the WaterMaze software. From these measures
the “percentage of time spent in the correct zone” was calculated as:
(time in correct zone/time in all eight zones) X 100%. By chance, i.e.,
during random swimming, this value should be: 100%/8 = 12.5%,
whereas higher values indicate a search preference for the correct
zone. The fact that the comparison zones were located on the inner
and outer rings was critical to unequivocally identify search
preference due to one-trial place memory on the rapid place-
learning task: throughout training, platform locations were always on
the inner or outer ring, and hence, a search preference for a zone in
this area as compared to a zone elsewhere on the pool surface might
have merely reflected procedural and incremental learning.

Experiment 1. Three groups with partial hippocampal lesions
sparing approximately 40% of hippocampal volume at the septal or
temporal pole, or in the intermediate region, a sham-lesioned control
group, and a group with complete hippocampal lesions were tested
on the rapid place-learning task. Experiment 1 was run in five
replications, each comprising 20 rats and always including sham-
lesioned controls. Rats were pretrained on the rapid place-learning
task for 8 d before the lesion surgery. After pretraining, rats were
divided into groups, which were matched for all analyzed perform-
ance measures as far as possible, to receive the different lesions
within 5 d. After at least 1 wk of recovery, 8 d of postsurgical testing
on the rapid place-learning task commenced. Two sets of eight
different platform locations (one novel location per day) were used
during pretraining and postsurgical testing, with the eight locations
evenly distributed across the pool (Figure S9). During both pretrain-
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ing and postsurgical testing, the two delays between trials 1 and 2 (10—
30 s or 20 min) were used equally often, and on days 4 and 8, trial 2
was run as probe trial. Two delays and two platform locations were
used each day in all four possible combinations, so that the different
delays were paired with the different locations in a counterbalanced
manner across days with and without probe trials. The allocation of
the different lesion groups to the different sequences of platform-
delay combinations was counterbalanced.

Experiment 2. The lesion groups from experiment 1 were further
tested on the incremental place-learning task, commencing 1-4 d
after testing on the rapid place-learning task was completed. To avoid
that results were confounded by the properties of one particular
platform location (rats tend to find some locations more easily than
others), two platform locations were used, counterbalanced between
groups, in distant parts of the pool. One location was on the outer
ring in the N, the other one on the inner ring in the SW (Figure S9).

Two days after testing on the incremental place-learning task, rats
were retested for 1 d on the rapid place-learning task with a delay of
20 min between trials 1 and 2. Rats trained to the location on the
outer ring (N) were switched to the location on the inner ring (SW)
and vice versa.

Experiment 5. Rats with lesions to the intermediate hippocampus,
sparing approximately 20% at the septal and temporal tips, and a
sham-lesioned control group were compared on the rapid place-
learning task. The experiment was run in one replication including
12 rats in each group. Pre- and postsurgical testing was as described
for experiment 1.

Evoked-potential recordings (experiment 3). Field potentials from
the dentate-gyrus granule cell layer in the septal hippocampus evoked
by stimulation of the perforant path were recorded from anesthe-
tized rats (urethane, 1.5 glkg intraperitoneally) that had received
sham lesions or partial lesions sparing the septal pole, followed by at
least 1 wk of recovery. Electrode coordinates and procedures were
similar to previous experiments [82]. The slope of the initial rising
part (2.0-2.6 ms or 2.2-2.8 ms after stimulation) and the population
spike amplitude were used as measures of the evoked responses. After
positioning the electrodes, low-frequency baseline stimulation
(biphasic 0.1-ms pulses, 0.05 Hz) at 0.5 mA was applied until
responses were stable. Recurrent feedback inhibition was tested by
applying paired pulses, 20 ms apart, at 0.5 mA (15 pairs, 10 s apart)
[75]. To determine input-output curves, stimulation intensity was
increased from 0.1 to 1 mA in 0.1-mA steps (three stimulations per
step, 0.1 Hz). To measure LTP, stimulus intensity was adjusted to
obtain responses whose slope was approximately 50% of the slope
maximum in the input-output curve, and low-frequency baseline
stimulation (biphasic 0.1-ms pulses, 0.05 Hz) was applied for at least
20 min before tetanization. A tetanus consisted of three trains of 50
biphasic 0.2-ms pulses at 250 Hz with 60 s between trains (overall 2
min). Following the tetanus, low-frequency baseline stimulation
continued for an additional 60 min. At the end of the experiments,
the locations of the electrode tips were marked by a 10-mA, 2-s
biphasic pulse to the electrodes. The rats were then perfused and
their brains further processed as described under Histology, below.

Place-cell recordings (experiment 4). Starting 4 to 7 d after tetrode
implantation, rats were trained to forage in a 1-m X 1-m arena with a
brown floor enclosed by four transparent Perspex walls (40-cm high)
and placed in a room with many distal cues. Water-soaked Rice
Krispies were continuously scattered across the arena by the
experimenter from behind a black curtain, so that the food-deprived
rats moved continuously within the whole open field. Tetrodes were
advanced daily to the CA1 pyramidal cell layer, and the rats became
familiar with the random-foraging task and the environment.
Neurophysiological signals from the tetrodes were recorded in
parallel to the rat’s path using Axona systems (Axona). Once well-
isolated hippocampal pyramidal cells were identified, experimental
recordings began. Cells were recorded while the rats foraged for two
ca. 15-min trials in the familiar environment (Fam) (Figure 5B); the
trials were separated by typically 30 to 60 min, which the rat spent in
a holding bucket and during which the arena was cleaned. Recordings
in the familiar environment were repeated on subsequent days as the
electrodes encountered new cells. In three rats (one lesioned, two
control), cells were also recorded during exposure to a new
environment (New) to examine the rapid formation of place-related
firing patterns. For this purpose, the familiar arena was replaced by a
new 0.64-m X 0.94-m arena with a black floor and 3-cm lips, and two
prominent distal visual cues were changed. The rats foraged during
four ca. 15-min trials (Fam-New-New-Fam), separated by ca. 10 min in
the bucket (Figure 5C). Spike sorting and subsequent detailed analysis
of the firing characteristics and patterns of well-isolated pyramidal
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cells were performed offline with dedicated software (for further
details, see Text S1, Supplementary Materials and Methods).

Statistical analysis. In the watermaze experiments (experiments 1,
2, and 5), ANOVA (with trials as within-subjects factor), followed by
Fisher LSD post hoc tests, was used to analyze group differences.
Paired two-tailed Student ¢-tests were used to compare latencies and
path lengths on trials 1 and 2, as well as the percentage time in the
correct zone with the chance level, in individual groups. In the field-
potential study (experiment 3), ANOVA was used to analyze input-
output curves. To analyze LTP, slopes were averaged in 5-min blocks
and expressed as a percentage of the mean slope during the 20-min
baseline recording. Paired two-tailed Student ¢-tests were used to
demonstrate LTP, and unpaired two-tailed ¢-tests were used for
group comparisons. In the single-unit experiment (experiment 4),
unpaired two-tailed Student ¢-tests were used to compare measures
between the two groups. Accepted level of significance was p < 0.05.

Histology. After completion of the experiments, rats were
anesthetized with an overdose of Euthatal (Harlow) and perfused
transcardially with saline, followed by 4% formaldehyde solution.
Brains were extracted from the skull, postfixed in 4% formaldehyde
solution for at least 24 h, and then egg-embedded as described
elsewhere [68]. Coronal 30-pm sections were cut on a freezing
microtome, and every fifth section—or, for verification of electrode
locations, every section—through the hippocampus was mounted on
gelatine-coated slides and stained with cresyl-violet. For documenta-
tion, digital photographs were taken from exemplar brains.

Lesion analysis and three-dimensional visualization of spared
hippocampal tissue. To measure the relative volume of spared
hippocampal tissue, the intact hippocampal area (dentate gyrus,
CA1-3 fields) on every fifth section was outlined at 10X magnification
for each brain and measured using a binocular connected via a digital
camera to a computer running Leica Q Win software. These areas
were summed up for each brain, and the mean hippocampal area was
calculated for each group. The relative hippocampal volume was
calculated by dividing the hippocampal areas in individual brains by
the mean hippocampal area determined for the relevant sham-
lesioned control group.

For the three-dimensional visualization and comparison of the
distinct chunks of spared hippocampus in the different groups,
Neurolucida and NeuroExplorer software (MicroBrightField Europe)
on a computer connected to a microscope via a digital camera were
used to prepare three-dimensional reconstructions of the hippo-
campus (dentate gyrus, CA1-3) together with the brain silhouette
from the coronal sections (cut 150 um apart) of exemplar brains.

Supporting Information

Figure S1. Experiment 1: Pretraining Performance in the Five
Prospective Surgical Groups at the Two Different Retention Delays
between Trials 1 and 2

The prospective surgical groups, to receive different hippocampal
lesions or sham surgery (see Figure 1C), were matched for: (A)
percentage time (%time) in correct zone (mean * SEM; chance level
12.5%, indicated by stippled line), when trial 2 was run as a probe on
days 4 and 8; (B) latencies (mean * SEM) to reach the platform,
averaged across days (all relevant main effects: /¥ < 1; interactions: I
< 1.5, p > 0.14). At this stage of the experiment, there was no
significant dependence of performance measures on the delays
between trial 1 and 2 (all relevant main effects: 7 < 1.1, p > 0.30;
interactions: F' < 2.6, p > 0.05). In all groups, performance based on
one-trial place memory was indicated by a %time in correct zone
about twice as high as expected based on chance and a significant
latency reduction from trial 1 to 2 (all £+ > 5.3, p < 0.0005).

Found at doi:10.1371/journal.pbio.1000089.sg001 (151 KB PDF).

Figure S2. Experiment 1: Postsurgical Performance on the Rapid
Place-Learning Task with a 15- to 30-s or a 20-min Delay between
Trials 1 and 2

(A) Percentage time (%time) in the correct zone (mean * SEM;
chance level 12.5%, indicated by stippled line) when trial 2 was
conducted as a probe trial either 15-30 s or 20 min after trial 1 (one
probe per delay). Apart from the significant main effect of group (see
main text), there was a significant main effect of delay (¥} g4 = 6.10, p
< 0.02), independent of group (interaction: Fygq4 = 1.45, p > 0.2),
indicating forgetting of one-trial place memory.

(B) Path lengths (mean = SEM) to reach the platform, shown
separately for the days with a trial 1 to trial 2 delay of 10-30 s and 20
min (4 d at each delay). Apart from the trial-dependent group
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differences (see main text), there was a main effect of delay (I} g4 =
8.32, p < 0.005), but only a strong tendency for this effect to be trial-
dependent (Fs950 = 2.44, p = 0.06); the effects and interactions
involving delay were group independent (F < 1.63, p > 0.17). That
percentage time in correct zone during presurgical testing (Figure S1)
did not show delay-dependence may reflect that one of the probe
trials was run on day 4, when performance had not quite yet reached
asymptotic levels.

Found at doi:10.1371/journal.pbio.1000089.sg002 (241 KB PDF).

Figure S3. Experiment 2: Performance on the Incremental Place-
Learning Task across All Days and Trials

(A) Path lengths (mean = SEM) to reach the platform on the eight
daily trials (T'1-T8) of days 1-5 and on the single trial on day 6.

(B) Percentage time (%time) in correct zone (mean * SEM; chance
level 12.5%, indicated by stippled line) on the trials that were run as
probes (T2 and T6 from days 1 to 5 and T1 on day 6).

The group differences in both measures decreased across trials within
days and, especially, between days. This was supported by highly
significant group X trial interactions (path lengths: Fyg 3360 = 1.69,
p < 0.0001; search preference: Fy g40 = 2.28, p < 0.0001).

Found at doi:10.1371/journal.pbio.1000089.sg003 (255 KB PDF).

Figure S4. Experiment 2: Path Lengths and Savings during Retesting
on the Rapid Place-Learning Task

Only sham-operated rats and the group with hippocampal lesions
sparing the intermediate region showed a significant reduction in
path lengths from trial 1 to 2 (t > 3.54, p < 0.001; all other ¢t < 1.23, p
> (.24), i.e., savings (group X trial interaction for path lengths: Fj5 99,
=3.91, p < 0.0001; main effect of group on savings: Iy 57 = 6.28, p <
0.0003). Group differences: an asterisk (*) indicates different from
sham-operated group and group with only the intermediate hippo-
campus spared (p < 0.015); a number sign (#) indicates different from
group with only the intermediate hippocampus spared (p < 0.03).

Found at doi:10.1371/journal.pbio.1000089.sg004 (153 KB PDF).

Figure S5. Experiment 4: Firing-Rate and Path Maps for All Cells
Recorded from Septal CAl during Two Successive Recording Trials
in the Familiar Environment (Fam)

Recordings from rats with hippocampal residuals at the septal pole
(A) and from rats with an intact hippocampus (B) are shown. The
color-coded firing-rate maps and, below, the location of spikes (red)
on the rat’s trajectory (gray) are shown. The peak firing rate for each
trial is indicated in red numbers above, and the correlation between
the firing-rate maps for the two successive trials is shown in black
below. Quantitative measures of the firing properties of all cells in
both groups of rats are summarized in Table S1.

Found at doi:10.1371/journal.pbio.1000089.sg005 (2.6 MB PDF).

Figure S6. Experiment 4: Firing-Rate and Path Maps for All Cells
Recorded from Septal CAl during a Succession of 15-min Trials in
the Familiar Environment (Fam) and the New Environment (New)

Recordings from hippocampal residuals at the septal pole, left, and
from an intact hippocampus, right, are shown. The color-coded
firing-rate maps and, below, the location of spikes (red) on the rat’s
trajectory (gray) are shown. All firing rate maps are scaled to the same
maximum firing rate, equal to the maximum of all four trials and
indicated in red to the right; correlations between the firing rate
maps for different trials are indicated in black below.

Found at doi:10.1371/journal.pbio.1000089.sg006 (1.13 MB PDF).

Figure S7. Experiment 5: Presurgical Training on the Rapid Place-
Learning Task and Performance Matching

(A) Latencies (mean * SEM) to reach the platform on the four daily
trials across the 8 d of presurgical training (data are shown for the 23
rats that were included in the final analysis). Data were collapsed for
the two different delays between trial 1 and 2 (15-30 s or 20 min),
which were used equally often and for half of the rats each on every
day. On days 4 and 8, trial 2 was run as probe.

(B and C) The prospective surgical groups, to receive sham surgery (n
= 12) or lesions to the intermediate hippocampus (n = 11), were
matched for: (B) percentage time (%time) in correct zone (mean *
SEM; chance level 12.5%, indicated by stippled line), when trial 2 was
run as a probe on days 4 and 8; (C) latencies (mean = SEM) to reach
the platform, averaged across days (all relevant main effects: FF < 1;
interactions: F < 2.2, p > 0.15). There was no significant dependence
of performance measures on the delays between trial 1 and 2 (all
relevant main effects: /¥ < 1; interactions: F < 2.0, p > 0.17). In both
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groups, performance based on one-trial place memory was indicated
by a significant latency reduction from trial 1 to 2, and a percentage
time in the correct zone about twice as high as expected based on
chance (1, > 4.28, p < 0.002).

Found at doi:10.1371/journal.pbio.1000089.sg007 (195.31 KB PDF).

Figure S8. Experiment 5: Postsurgical Performance on the Rapid
Place-Learning Task with a 15- to 30-s or a 20-min Delay between
Trials 1 and 2

(A) Percentage time (%time) in the correct zone (mean * SEM;
chance level 12.5%, indicated by stippled line) when trial 2 was
conducted as a probe trial either 15-30 s or 20 min after trial 1 (one
probe per delay). There was only a significant main effect of group
(see main text), but no main effect of delay nor an interaction group
X delay (both F; 90 < 1).

(B) Path lengths (mean * SEM) to reach the platform, shown
separately for the days with a trial 1 to trial 2 delay of 10-30 s and 20
min (4 d at each delay).

Apart from the trial-dependent group differences (see main text),
there were no significant main effects or interactions (all F < 2.3, p >

0.09).
Found at doi:10.1371/journal.pbio.1000089.sg008 (155 KB PDF).

Figure S9. Platform Locations Used During the Different Stages of
Behavioral Testing and the Surrounding Zones Used for the Analysis
of Search Preference

Found at doi:10.1371/journal.pbio.1000089.sg009 (96 KB PDF).

Table S1. Firing Properties of Complex Spike Cells in Septal CA1
Recorded from Control Rats with an Intact Hippocampus and from
Rats with Partial Hippocampal Lesions Sparing Only the Septal Pole

Found at doi:10.1371/journal.pbio.1000089.st001 (105 KB DOC).

Table S2. Stereotaxic Coordinates (in Millimeters from Bregma) and
Injection Volumes for the Hippocampal Ibotenic Acid Injections in
the Different Lesion Groups

Found at doi:10.1371/journal.pbio.1000089.st002 (53 KB DOC).

Text S1. The Supporting Text containing Supplementary Results,
Supplementary Discussion, Supplementary Materials and Methods,
and Supplementary References

Found at doi:10.1371/journal.pbio.1000081.sd001 (86 KB DOC).

Video S1. Intact Hippocampus

Videos S1-S5 show rotations of the 3D reconstructions depicted in
Figures 1C and 6B; please note that, different from the figures,
hippocampal residuals are not overlaid on an intact hippocampus.
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